• Title/Summary/Keyword: Discharge capability

Search Result 228, Processing Time 0.024 seconds

A Study on the Electrode Characteristics of a New High Capacity Non-Stoichiometry Zr-Based Laves Phase Alloys for Anode Materials of Ni/MH Secondary Battery

  • Lee Sang-Min;Yu Ji-Sang;Lee Ho;Lee Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.72-75
    • /
    • 2000
  • For the purpose of developing the non-stoichiometric Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out in KAIST. After careful alloy design of $ZrMn_2-based$ hydrogen storage alloys through varing their stoichiometry while susbstituting or adding some alloying elements, the $Zr-Ti-(Lh-V-Ni)_{2.2},\;Zr-Ti-(Mn-V-Cr-Ni)_{1.8\pm0.1}$ with high capacity and better performance was developed. Consequently the $Zr-Ti-(Mn-V-Ni)_{2.2}$ alloy has a high discharge capacity of 394mAh/g and shows a high rate capability equaling to that of commercialized $AB_5$ type alloys. On the other hand, in order to develop the hydrogen storage alloy with higher discharge capacity, the hypo-stoichiometric $Zr(Mn-V-Ni)_{2-\alpha}$ alloys substituted by Ti are under developing. As the result of competitive roles of Ti and $stocihiometry({\alpha})$, the discharge capacity of $Zr-Ti-(Mn-V-Cr-Ni)_{l.8\pm0.1}$ alloys is about 400mAh/g(410 mAh/g, which shows the highest level of performance in the Zr-based alloy developed. Our sequential endeavor is improving the shortcoming of Zr-based Laves phase alloy for commercialization, i.e., poor activation property and low rate capability, etc. It is therefore believed that the commercialization of Zr-based Laves phase hydrogen storage alloy for Ni-MH rechargeable battery is in near future.

The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material (Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과)

  • Lee, Hye-Jin;Yun, Su-Hyun;Park, Bo-Gun;Ryu, Jea-Hyeok;Kim, Kwan-Su;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

Optimization of Lithium in Li1+x[Mn0.720Ni0.175Co0.105]O2 as a Cathode Material for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Ji-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Different amounts of excess lithium in the range of x = 0~0.3 were added to $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode materials synthesized using the co-precipitation method to investigate its microstructure and electrochemical properties. Pure layered structure without impurities was confirmed in the XRD pattern analysis and increasing peak intensity of $Li_2MnO_3$ was observed along with the addition of over 0.2 mol Li. The initial discharge capacity of the stoichiometric composition was determined to be 246 mAh/g, while the discharge capacity of the addition of 0.1 mol Li was obtained to be 241 mAh/g, which was not significantly different from that of the stoichiometric composition. However, the discharge capacities decreased dramatically after the addition of 0.2 and 0.3 mol Li to 162 mAh/g and 146 mAh/g, respectively. In the rate capability test, the active $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode material of the stoichiometric composition showed a dramatic decrease in its discharge capacity with increasing C-rate, as evidenced by the result that the discharge capacity at 5C was 13% compared with 0.1C. On the other hand, the discharge capacity of compositions containing excess lithium was improved at higher current rates. The cycling test showed that the composition containing an excess of 0.1 mol Li had the most outstanding capacity retention.

Near-Field Hydrodynamic Analysis of the Submerged Thermal Discharge Using CFD Model (CFD 모델을 이용한 수중방류 온배수의 근역 동수역학 해석)

  • Hwang, In-Tae;Kim, Deok-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.466-473
    • /
    • 2011
  • The buoyancy and initial momentum fluxes make near-field dominated by buoyant jet when thermal discharge releases underwater. In order to estimate prediction capabilities of those near-field phenomena, non-hydrostatic RANS applied CFD(Computational Fluid Dynamic) model was used. Condition of model was composed based on past laboratory experiments. Numerical simulations carried out for the horizontal buoyant jet in the stagnant flow and vertical buoyant jet into crossflow. The results of simulation are compared with the terms of trajectory and dilution rate of laboratory experiments and analytic model(CorJET) results. CFD model showed a good agreement with them. CFD model can be appropriate for assessment of submerged thermal discharge effect because CFD model can resolve the limitations of near-field analytic model and far-field quasi 3D hydrodynamic model. The accuracy and capability of the CFD model is reviewed in this study. If the computational efficiency get improved, CFD model can be widely applied for simulation of transport and diffusion of submerged thermal discharge.

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Influence of Carbon Black as a Conductor on Electrode Characteristics for Lithium Secondary Battery

  • Yoon, Se-Rah;Lee, Joong-Kee;Ju, Jae-Beck;Cho, Byung-Won;Park, Dal-Keun
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • The electrochemical behavior of the $LiCoO_2$ electrode, containing carbon black as a conductor, depends upon the nature and characteristics of carbon black. In this study, six different kinds of carbon blacks were employed to investigate the relationship between the properties of carbon blacks and electrochemical characteristics of the electrode. The larger amount of surface oxygen functional groups brought the lower electrical conductivity for the carbon blacks. The electrical conductivity of carbon blacks was closely related to the impurities such as ash and volatile content. The rate capability and cyclability of the electrode were improved with the higher conductivity of carbon blacks used. So, it can be concluded that high conductive carbon black plays an important role as a conductor for high rate of charge-discharge capability and initial efficiency.

  • PDF

Fabrication and feasibility estimation of Micro Engine Component (미세 엔진 운용성 검증 및 요소 기술 개발)

  • Lee, Dae-Hoon;Park, Dae-Eun;Choi, Kwon-Hyoung;Yoon, Joon-Bo;Kwon, Se-Jin;Yoon, Eui-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.31-36
    • /
    • 2001
  • As a part of micro engine development feasibility estimation was done through fabrication and test of down scaled combustor and MEMS fabricated spark electrode. In an experimental observation of the down scaled combustion phenomena where flame propagation was observed by optical method and pressure change in combustor which gives the information about the reaction generated thermal energy was recorded and analyzed. Optimal combustor scale was derived to be about 2mm considering increased heat loss effect and thermal energy generation capability. Through the fabrication and discharge test of MEMS electrode effects of electrode width and gap was investigated. Electrode was fabricated by thick PR mold and electroplating. From the result discharge voltage characteristic in sub millimeter scale electrode having thickness of $40{\mu}m$ was obtained. From the result base technology for design and fabrication of micro engine was obtained.

  • PDF

Diagonoses of Power Transformer Using Acoustic Emission Techniques (음향기술을 이용한 전력용 변압기 예방진단)

  • Hwang, S.J.;Kwak, H.R.;Jeon, H.J.;Kim, J.C.;Park, J.W.;Choi, S.A.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.938-941
    • /
    • 1992
  • This paper presents an acoustic emission(AE) technique using ultrasonic sensors to diagonize power transformers. Conventional methods detect and measure the electrical signal of the partial discharge(PD) of transformers in operation. The proposed techniques measures the acoustic signal generated by the partial discharge, and counts the number of the waveforms above a threshold to diagonize transformers. Experiments showed that the proposed method improved diagonosis capability over the conventional PD method.

  • PDF

Electric Field Distribution Simulation of the Cable Joint Materials (케이블 접속재료의 전계분포 시뮬레이션)

  • Kim, Hyung-Joo;Byun, Doo-Gyoon;Shin, Jong-Yeol;Lee, Duk-Jin;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.601-604
    • /
    • 2001
  • The insulation materials of cables used for underground power transmission requires a higher insulating capability. and the most popular method to examine the cable is partial discharge test due to applying variation voltage. In the thesis. air void. silicone oil. of which may possibly exist real cables. are simulated by Electra 2D program. Also the relations between calculated field strength and the void defect type in the cable joint materails. In the modeling. electic field inner to the cable joint material composed by XLPE and EPDM is modeling simulated. We obtained the electric field distribution in void due to two conditions.

  • PDF

Selection of Machining Parameters of Electric Discharge Wire Cut Using 2-Step Neuro-estimation (2단계 신경망 추정에 의한 와이어 컷 방전 가공 조건 선정)

  • Lee, Keon-Beom;Ju, Sang-Yoon;Wang, Gi-Nam
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.125-132
    • /
    • 1997
  • We proposed a 2-step neural network approach for estimating machining parameters of electric discharge wire cut. The first step net, which is described as a backward neuro-estimation, is designed for estimating coarse cutting parameters while the second phase net, as a polishing forward neuro-estimation, is utilized for determining fine parameters. Sequential estimation procedure, based on backward and forward net, is performed using the net's approximation capability which is M to 1 and 1 to M mapping property. Experimental results an given to evaluate the accuracy of the proposed 2-step neuro-estimation.

  • PDF