DOI QR코드

DOI QR Code

Optimization of Lithium in Li1+x[Mn0.720Ni0.175Co0.105]O2 as a Cathode Material for Lithium Ion Battery

  • Kim, Jeong-Min (Battery Piezoelectric Research Center, Korea Electrotechnology Research Institute) ;
  • Jeong, Ji-Hwa (Battery Piezoelectric Research Center, Korea Electrotechnology Research Institute) ;
  • Jin, Bong-Soo (Battery Piezoelectric Research Center, Korea Electrotechnology Research Institute) ;
  • Kim, Hyun-Soo (Battery Piezoelectric Research Center, Korea Electrotechnology Research Institute)
  • Received : 2011.05.08
  • Accepted : 2011.05.26
  • Published : 2011.06.30

Abstract

Different amounts of excess lithium in the range of x = 0~0.3 were added to $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode materials synthesized using the co-precipitation method to investigate its microstructure and electrochemical properties. Pure layered structure without impurities was confirmed in the XRD pattern analysis and increasing peak intensity of $Li_2MnO_3$ was observed along with the addition of over 0.2 mol Li. The initial discharge capacity of the stoichiometric composition was determined to be 246 mAh/g, while the discharge capacity of the addition of 0.1 mol Li was obtained to be 241 mAh/g, which was not significantly different from that of the stoichiometric composition. However, the discharge capacities decreased dramatically after the addition of 0.2 and 0.3 mol Li to 162 mAh/g and 146 mAh/g, respectively. In the rate capability test, the active $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode material of the stoichiometric composition showed a dramatic decrease in its discharge capacity with increasing C-rate, as evidenced by the result that the discharge capacity at 5C was 13% compared with 0.1C. On the other hand, the discharge capacity of compositions containing excess lithium was improved at higher current rates. The cycling test showed that the composition containing an excess of 0.1 mol Li had the most outstanding capacity retention.

Keywords

References

  1. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  2. H. K. Park, J. Korean Electrochem. Soc., 11, 197 (2008). https://doi.org/10.5229/JKES.2008.11.3.197
  3. K. M. Shaju, G. V. Subba Rao and B. V. R. Chowdari, Electrochim. Acta. 48, 145 (2002). https://doi.org/10.1016/S0013-4686(02)00593-5
  4. B. W. Kang and G. Ceder, Nature, 458, 190 (2009). https://doi.org/10.1038/nature07853
  5. Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak and K. Amine, Nature Mater., 8, 320 (2009). https://doi.org/10.1038/nmat2418
  6. A. Francis, K. Daniela, T. Michael, Z. Leila, G. Judith, L. Nicole, G. Gil, M. Boris and A. Doron, J. Electrochem. Soc., 157, 1121 (2010).
  7. M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li and S. A. Hackney, J. Mater. Chem., 15, 2257 (2005). https://doi.org/10.1039/b417616m
  8. X. J. Guo, Y. X. Li, M. Zheng, J. M. Zheng, J. Li, Z. L. Gong and Y. Yang, J. Power Sources, 184, 414 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.013
  9. S. H. Kang and M. M. Thackeray, J. Electrochem. Soc., 155, A269 (2008). https://doi.org/10.1149/1.2834904
  10. J. M. Zheng, J. Li, Z. R. Zhang, X. J. Cuo and Y. Yang, Solid State Ion., 179, 1794 (2008). https://doi.org/10.1016/j.ssi.2008.01.091
  11. Y. K. Sun, S. W. Cho, S. W. Lee, C. S. Yoon and K. Amine, J. Electrochem. Soc., 154, A168 (2007). https://doi.org/10.1149/1.2422890
  12. J. Cho, Y. J. Kim, T. J. Kim and B. Park, Angew, Chem., Int. Ed., 40, 18 (2001).
  13. D. Ahn, J. G. Lee, J. S. Lee, J. Kim, J. Cho and B. Park, Curr. Appl. Phys., 7, 172 (2007). https://doi.org/10.1016/j.cap.2006.02.014
  14. M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner and M. A. Anderson, Electrochem. Commun., 5, 752 (2003). https://doi.org/10.1016/S1388-2481(03)00179-6
  15. S. H. Choi, O. A. Shlyakhtin, J. S. Kim and Y. S. Yoon, J. Power Sources, 140, 355 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.036
  16. J. H. Lim, H. J. Bang, K. S. Lee, K. Amine and Y. K. Sun, J. Power Sources, 189, 571 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.035

Cited by

  1. Catalytic activity of carbon-sphere/Co3O4/RuO2 nanocomposite for Li-air batteries vol.31, pp.1-2, 2013, https://doi.org/10.1007/s10832-013-9831-y
  2. Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating vol.7, pp.2, 2016, https://doi.org/10.5229/JECST.2016.7.2.179
  3. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2 vol.29, pp.2, 2012, https://doi.org/10.1007/s10832-012-9747-y
  4. Effects of transition metal doping and surface treatment to improve the electrochemical performance of Li2MnO3 vol.30, pp.3, 2013, https://doi.org/10.1007/s10832-012-9778-4