• Title/Summary/Keyword: Discarded Battery

Search Result 6, Processing Time 0.019 seconds

Study on-Gas-generating Property Of Lithium Polymer Drone batteries (리튬 폴리머 드론 배터리 방전시 이상가스에 대한 연구)

  • Jong-Heon Lee;Jae-Won Kim;Hong-Joo Yoon;Won-Chan Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.195-204
    • /
    • 2023
  • The drone's battery system uses lithium-ion or lithium-polymer batteries, and it is known that the cause of fire during the disposal process after using the drone is combustible gas from the battery being discarded. Most of the batteries in the disposal process generated oxygen, but a small amount of flammable gas was also generated, and a large amount of chlorine ions and sulfates were also detected in the equipment used for treatment. If a system that detects this early is configured, it will be possible to reduce the risk of accidents caused by discarded batteries.

DC/DC Converter Design for 7kW Fuel Cell (7kW 연료전지용 DC/DC 컨버터 설계)

  • Kim, Ga-In;Shin, Min-Ho;Lee, Jung-Hyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.150-156
    • /
    • 2022
  • This study proposes a design method of fuel cell DC/DC converter using in 5-ton forklift. For efficient hydrogen usage, targeted fuel cell system recirculates discarded hydrogen after fuel cell reaction. Recirculating hydrogen contains much impurities that reduces output power, increasing pressure that can damage the internal fuel cell reaction system. The proposed DC/DC converter effectively converts fuel cell power considering the voltage drop rate to reflect the recirculating hydrogen. Then, frequency control method is used to regulate the current ripple amount for battery and fuel cell hybrid configuration. Proposed power converter system design and control methods are verified in a practical fuel cell system that implements recirculating hydrogen.

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

Reverse Logistics Process for Electric Vehicle Batteries (전기자동차 배터리 역물류 프로세스 연구)

  • Seo, Dong-Min;Kim, Yong-Soo;Kim, Hyun-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.57-70
    • /
    • 2011
  • To address global climate change, various governments are investing in electric vehicle research and, especially in Korea, the application of electric vehicles to public transportation. The lithium batteries used in electric vehicles typically have an expected life cycle of 2-5 years. If electric vehicles become commonly used, they will generate many discarded batteries that could be harmful to the environment. Additionally, lithium batteries are potentially explosive and should be handled appropriately. Thus, reverse logistics issues are involved in handling expired batteries efficiently and safely. Reverse logistics includes the collection, recycling, remanufacturing, and discarding of waste. This study developed a reverse logistics process for electric vehicle batteries after analyzing the as-is process for lead and lithium batteries. It also developed possible disposal regulations for electric vehicle batteries based on current laws regarding conventional batteries.

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

Evaluation of Recycling Resources in Discarded Information and Communication Technology Devices (Smartphones, Laptop computers) (폐 정보통신기기(스마트폰, 노트북 PC)의 자원화 가치 분석)

  • Park, Seungsoo;Jung, Minuk;Kim, Seongmin;Han, Seongsoo;Jung, Insang;Park, Jihwan;Park, Jaikoo
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.16-29
    • /
    • 2018
  • In this study, metal and nonmetal contents and their economic values in ICT devices such as smart phones and laptop computers were evaluated. The electronic devices made by LG and Samsung were disassembled into 5 parts, which are printed circuit board assembly, battery, display, case and other electronic components. Metal and nonmetal contents in these parts were analyzed, and their economic values were calculated via multiplying the materials' contents by metal price obtained from KOMIS or nonmetal exchange price acquired from Korean recycling markets. Finally, the materials' contents and values according to each electronic parts and electronic devices were calculated. The results showed that the value of the smartphones and laptop computers of LG are 4,449.6 KRW (28,506 KRW/kg) and 6,830.2 KRW (7,053 KRW/kg), and those of Samsung are 1,849.3 KRW (13,499 KRW/kg) and 6,667.5 KRW (4,831 KRW/kg), respectively. It was also found that most of the value was concentrated in batteries and printed circuit board assemblies. In addition, Co, Au and Cu were found to be the most valuable resources in the devices.