• Title/Summary/Keyword: Disaster information

Search Result 3,479, Processing Time 0.027 seconds

Deployment Strategies of Cloud Computing System for Defense Infrastructure Enhanced with High Availability (고가용성 보장형 국방 클라우드 시스템 도입 전략)

  • Kang, Ki-Wan;Park, Jun-Gyu;Lee, Sang-Hoon;Park, Ki-Woong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.7-15
    • /
    • 2019
  • Cloud computing markets are rapidly growing as cost savings and business innovation are being carried out through ICT worldwide. In line with this paradigm, the nation is striving to introduce cloud computing in various areas, including the public sector and defense sector, through various research. In the defense sector, DIDC was established in 2015 by integrating military, naval, air and military computing centers, and it provides cloud services in the form of IaaS to some systems in the center. In DIDC and various future cloud defense systems, It is an important issue to ensure availability in cloud defense systems in the defense sector because system failures such as network delays and system resource failures are directly linked to the results of battlefields. However, ensuring the highest levels of availability for all systems in the defense cloud can be inefficient, and the efficiency that can be gained from deploying a cloud system can be reduced. In this paper, we classify and define the level of availability of defense cloud systems step by step, and propose the strategy of introducing Erasure coding and failure acceptance systems, and disaster recovery system technology according to each level of availability acquisition.

Accuracy Assessment of the Satellite-based IMERG's Monthly Rainfall Data in the Inland Region of Korea (한반도 육상지역에서의 위성기반 IMERG 월 강수 관측 자료의 정확도 평가)

  • Ryu, Sumin;Hong, Sungwook
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.

A Field Test on Bearing Capacity Characteristics of Materials for Ground Cavity Restoration Based on Plate Bearing Test (평판재하시험을 이용한 공동 복구재료의 지지특성에 관한 현장실험)

  • Park, Jeong-Jun;Shin, Heesoo;Kim, Dongwook;You, Seung-Kyong;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.293-304
    • /
    • 2018
  • This paper described a results of field test based on plate bearing test of the restoration material, which was developed to restore the ground cavity due to sewerage damage. The analysis of bearing capacity characteristics on the restoration materials was performed by experimental results. The results showed that the load bearing capacity in the maximum stress condition of the foundation ground is about 66%-70%, when the expansion mat is embedded at the bottom of 0.1 m and 0.2 m from the ground surface. However, The load bearing capacity of expansion mat according to embedded depth was not large. The load bearing capacity of concrete mats was about 82%-90% compared with that of ground surface, and it showed about 50% of the load bearing capacity compared with the expansion mat. As a result of analysis of allowable bearing capacity according to restoration materials, it was confirmed that the allowable bearing capacity of the expansion mat and the concrete was about 130%-150% and about 160% more than the foundation ground, respectively.

A Study on the Measurement and Comparison(IEC 60079-32-2) of Flammable Liquid Conductivity (인화성 액체 도전율에 관한 측정 및 비교(IEC 60079-32-2) 연구)

  • Lee, Dong Hoon;Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.22-31
    • /
    • 2019
  • The flammable liquid conductivity is an important factor in determining the generation of electrostatic in fire and explosion hazardous areas, so it is necessary to study the physical properties of flammable liquids. In particular, the relevant liquid conductivity in the process of handling flammable liquids in relation to the risk assessment and risk control in fire and explosion hazard areas, such as chemical plants, is classified as a main evaluation item according to the IEC standard, and it is necessary to have flammable liquid conductivity measuring devices and related data are required depending on the handling conditions of the material, such as temperature and mixing ratio for preventing the fire and explosion related to electrostatic. In addition, IEC 60079-32-2 [Explosive Atmospheres-Part 32-2 (Electrostatic hazards-Tests)] refers to the measuring device standard and the conductivity of a single substance. It was concluded that there is no measurement data according to the handling conditions such as mixing ratio of flammable liquid and temperature together with the use and measurement examples. We have developed the measurement reliability by improving the structure, material and measurement method of measuring device by referring to the IEC standard. We have developed a measurement device that is developed and manufactured by itself. The test results of flammable liquid conductivity measurement and the data of the NFPA 77 (Recommended Practice on Static Electricity) Annex B Table B.2 Static Electric Characteristic of Liquids were compared and verified by conducting the conductivity measurement of the flammable liquid handled in the fire and explosion hazardous place by using Measuring / Data Acquisition / Processing / PC Communication. It will contribute to the prevention of static electricity related disaster by taking preliminary measures for fire and explosion prevention by providing technical guidance for static electricity risk assessment and risk control through flammable liquid conductivity measurement experiment. In addition, based on the experimental results, it is possible to create a big data base by constructing electrostatic physical characteristic data of flammable liquids by process and material. Also, it is analyzed that it will contribute to the foundation composition for adding the specific information of conductivity of flammable liquid to the physical and chemical characteristics of MSDS.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

A Study on the Awareness of Firefighters on the Introduction of Drones and the Operation and Application of drones - Focusing on the Firefighters of Jeollanam-do (소방드론 도입에 따른 소방공무원의 인식과 드론의 운용 및 활용에 대한 연구 - 전라남도 소방공무원을 중심으로)

  • Ha, Kang Hun;Kim, Jae Ho;Choi, Jae Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.332-340
    • /
    • 2021
  • The purpose of this study was to present a method for the application of drones through analysis after surveying Jeollanam-do firefighters regarding the recognition, operation, field of application, necessary field of work, and the need for education on fire drones. As a result of the survey, 80.29% of respondents were found to be willing to operate drones, and the fields of work for which drones were considered the most necessary were in the order of rescue, fire suppression, life safety, first aid, and others. Besides, 77.38% of respondents thought that drones could contribute to the prevention of safety accidents for firefighters, and 70.13% of respondents thought that it would be appropriate to recruit firefighting drone operators through changing positions, and respondents chose firefighters in their 40s as the most suitable age group for firefighting drone operation. Also, 82.84% of respondents said they would participate in drone training, and they recognized that the use of drones could contribute to solving the physical problems caused by the aging of firefighters, and that drone training would also help firefighters manage their retirement. The fields where firefighting drones are used were investigated in the order of searching for requestors, checking on-site information, and checking on-site prior risk. In this study, a difference analysis for each group was performed according to the drone operation experience. There was a statistically significant difference in the items of safety measures for requestors. The results of variance analysis by work experience confirmed that there were statistically significant differences in a total of eight items, including four items related to the field of use of drones, and the age group of the drone operating crew, and whether or not to help retirement management.

Adaptive Beamwidth Control Technique for Low-orbit Satellites for QoS Performance improvement based on Next Generation Military Mobile Satellite Networks (차세대 군 모바일 위성 네트워크 QoS 성능 향상을 위한 저궤도 위성 빔폭 적응적 제어 기법)

  • Jang, Dae-Hee;Hwang, Yoon-Ha;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.1-12
    • /
    • 2020
  • Low-Orbit satellite mobile networks can provide services through miniaturized terminals with low transmission power, which can be used as reliable means of communication in the national public disaster network and defense sector. However, the high traffic environment in the emergency preparedness situation increases the new call blocking probability and the handover failure probability of the satellite network, and the increase of the handover failure probability affects the QoS because low orbit satellites move in orbit at a very high speed. Among the channel allocation methods of satellite communication, the FCA shows relatively better performance in a high traffic environment than DCA and is suitable for emergency preparedness situations, but in order to optimize QoS when traffic increases, the new call blocking and the handover failure must be minimized. In this paper, we propose LEO-DBC (LEO satellite dynamic beam width control) technique, which improves QoS by adaptive adjustment of beam width of low-orbit satellites and call time of terminals by improving FCA-QH method. Through the LEO-DBC technique, it is expected that the QoS of the mobile satellite communication network can be optimally maintained in high traffic environments in emergency preparedness situations.

A Study on Development of Damage Impact Distance Calculation Formula for Accident Response and Prevention in case of Leakage of Substances Prepared for Evacuation of Residents in Chungju (충주의 주민대피 대비물질 누출사고 시 사고대응·예방을 위한 피해영향거리 산정식 개발 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub;Lee, Myeong-Ji;Yun, Jeong-Hyeon;Jung, Woong-Yul;Oh, Seung-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.703-712
    • /
    • 2021
  • In this study, a formula was derived to calculate the damage impact distance using the Chemical Accident Response Information System (CARIS) so that local governments can decide on the evacuation and notification of 13 types of substances. The National Institute of Chemical Safety selected 16 out of 97 types of accident preparedness substances in 2018 and called them residents' evacuation preparedness substances. In a chemical accident, local governments should prepare for resident notification, such as emergency disaster texts. Using the CARIS in Chungju, this study modeled the damage-affected distances of 13 types of substances for the evacuation of residents. Under all conditions, the coefficient of determination R2 was 0.99 or higher, representing a range of at least 0.9921 to a maximum 0.9999. The relative standard deviation between the damage impact distance obtained using the calculation formula, and the CARIS result was compared. The minimum separation distance was corrected considering the actual chemical accident response situation, and the range was found to be between 0.58 and 5.97%. The damage impact distance can be calculated at the site using the calculation formula derived from the research, and local governments can determine whether to evacuate or notify residents.

Topographical Analysis of Landslide in Mt. Woomyeon Using DSM (DSM 자료를 이용한 우면산 산사태 지형 분석)

  • Kim, Gihong;Choi, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.60-66
    • /
    • 2020
  • Torrential rain causes landslide damage every year. In particular, the 2011 downpour caused landslides at numerous points throughout Mt. Woomyeon, which resulted in considerable damage to people and property. Because it occurred in an urban area, this case became a major social issue and received public attention. Measures were quickly implemented for multilateral investigations and recovery. Landslides caused by heavy rain are greatly affected by rainfall at the time. Landslides from the upper part erode the flow path, increasing the size, causing much damage to the lower part. This study selected a rural village area among the damaged areas of Mt. Woomyeon, and analyzed the change in terrain profile before and after a landslide using the DSM data obtained from airborne LiDAR. This area can be divided into three hydrological basins. For each basin, the analysis was performed on the average slope of each part of the flow path, as well as the erosion and deposition due to soil flow. As a result of the analysis, it was estimated that the total amount of soil from the Jeonwon village was 15,300㎥. These field data based on GIS can be used as basic information to predict damage in the case of a similar disaster, and it can be helpful in analyzing the results of various debris flow simulations.

Drought evaluation using unstructured data: a case study for Boryeong area (비정형 데이터를 활용한 가뭄평가 - 보령지역을 중심으로 -)

  • Jung, Jinhong;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1203-1210
    • /
    • 2020
  • Drought is caused by a combination of various hydrological or meteorological factor, so it is difficult to accurately assess drought event, but various drought indices have been developed to interpret them quantitatively. However, the drought indexes currently being used are calculated from the lack of a single variable, which is a problem that does not accurately determine the drought event caused by complex causes. Shortage of a single variable may not be a drought, but it is judged to be a drought. On the other hand, research on developing indices using unstructured data, which is widely used in big data analysis, is being carried out in other fields and proven to be superior. Therefore, in this study, we intend to calculate the drought index by combining unstructured data (news data) with weather and hydrologic information (rainfall and dam inflow) that are being used for the existing drought index, and to evaluate the utilization of drought interpretation through verification of the calculated drought index. The Clayton Copula function was used to calculate the joint drought index, and the parameter estimation was used by the calibration method. The analysis showed that the drought index, which combines unstructured data, properly expresses the drought period compared to the existing drought index (SPI, SDI). In addition, ROC scores were calculated higher than existing drought indices, making them more useful in drought interpretation. The joint drought index calculated in this study is considered highly useful in that it complements the analytical limits of the existing single variable drought index and provides excellent utilization of the drought index using unstructured data.