• Title/Summary/Keyword: Disaster and safety

Search Result 2,689, Processing Time 0.03 seconds

Analysis of the Spread of Issues Related to COVID-19 Vaccine on Twitter: Focusing on Issue Salience (코로나19 백신 관련 트위터 상의 이슈 확산 양상 분석: 이슈 현저성을 중심으로)

  • Hong, Juhyun;Lee, Mina
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.613-621
    • /
    • 2021
  • This study conducted a network analysis to determine how COVID-19 vaccine-related issue spread on Twitter during the introduction stage of the COVID-19. Issue diffusion tendency is analyzed according to the time period: phase 1 (initiation of vaccine introduction: March 7 - April 3, 2021), phase 2 (stagnant period of vaccination: April 4 - April 22, 2021), and phase 3 (increase of vaccination: April 23 - May 5, 2021). NodeXL was used for data collection and analysis. Daily Twitter network data were collected by entering search terms highly related to the COVID-19 vaccine. This study found that side effects-related opinions were repeatedly formed throughout the analysis period. As the vaccination rate increased and death cases were reported on media, death-related issues also emerged on Twitter. On the other hand, vaccine safety did not receive much attention on Twitter. The results of this study highlight the role of social media as a channel of issue diffusion when a national disaster strikes. We emphasize the need for the government to monitor public opinions on social media and reflect them in crisis communication strategies.

Applicability of Bearing Capacity for Single Drilled Shaft Using Empirical equation based on Ground Condition (토질특성에 따른 현장타설말뚝 지지력 산정 경험식의 적용성)

  • Kim, Daehyeon;Jeong, Sangguk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.167-180
    • /
    • 2019
  • Friction piles are being constructed in Southeast Asia (Myanmar, Cambodia, Vietnam, etc.) where the soft ground is deep, and many cases of friction piles are accumulated in terms of experience. In this study, we used the results of four static load test and load transfer test conducted in Myanmar sites to analyze the skin friction of soil layer. In addition, we proposed a relationship chart with skin friction measured in the N-value of Standard Penetration Test (SPT) and the load transfer test result of the single drilled shaft. In the case of Myanmar sites, the range of soil layers was deeper than domestic sites, so the conventional formula of skin friction using the N-value of SPT is different from domestic sites. In sandy layer, fs = 0.096 N in Myanmar sites showed a similar result of the domestic fs = 0.106 N. In clayey layer, fs = 0.315 N, in Myanmar sites showed about 5.0 times higher than the domestic fs = 0.062 N. The results of this study are based on limited data. Therefore, if we analyze the results of more load transfer tests, we can suggest a conventional formula for skin friction according to the N-value. It is expected to be used as important basic data in the future.

A Development of Regional Frequency Model Based on Hierarchical Bayesian Model (계층적 Bayesian 모형 기반 지역빈도해석 모형 개발)

  • Kwon, Hyun-Han;Kim, Jin-Young;Kim, Oon-Ki;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.13-24
    • /
    • 2013
  • The main objective of this study was to develop a new regional frequency analysis model based on hierarchical Bayesian model that allows us to better estimate and quantify model parameters as well as their associated uncertainties. A Monte-carlo experiment procedure has been set up to verify the proposed regional frequency analysis. It was found that the proposed hierarchical Bayesian model based regional frequency analysis outperformed the existing L-moment based regional frequency analysis in terms of reducing biases associated with the model parameters. Especially, the bias is remarkably decreased with increasing return period. The proposed model was applied to six weather stations in Jeollabuk-do, and compared with the existing L-moment approach. This study also provided shrinkage process of the model parameters that is a typical behavior in hierarchical Bayes models. The results of case study show that the proposed model has the potential to obtain reliable estimates of the parameters and quantitatively provide their uncertainties.

A Study on Software Implementation for Validation of Electronic Navigational Chart Regarding Standard Check for S-10X Data (S-10X 데이터 표준 검사를 위한 전자해도 검증 소프트웨어 구현에 관한 연구)

  • LEE, Ha-Dong;KIM, Ki-Su;CHOI, Yun-Su;KIM, Ji-Yoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.83-95
    • /
    • 2018
  • With recent technological advances in the shipbuilding industry, vessels have been improved in size and performance. As a result, an accident such as grounding, caused by a single ship-to-ship collision, could lead to a large-scale maritime disaster. Considering the seriousness of the situation, the international community has been consistently updating the standards for Electronic Navigational Chart(ENC) to improve the maritime safety. S-57, the existing ENC standard governed by the International Hydrographic Organization(IHO), includes standards for generating conventional binary-type ENC data sets. The S-57 standard, however, has not been updated since the release of Version 3.1 in December 2000. Since then, the standard has failed to reflect technological development regarding maritime spacial information, which has been consistently improving. In an effort to address this concern, the IHO designated S-100, i.e., the next-generation ENC production standard. S-100 differs from S-57 in data exchange type. Contrary to the conventional ENC standards, which use binary-type data, S-10X, based on the next-generation ENC standards, uses ENC data composed of Feature Catalogue, Portrayal Catalogue, and GML. Considering this fact, it is necessary to update S-58, the ENC validation check standard, or designate a new standard for ENC validation checks. This study is developed own software to implement validation checks for new types of data, and identified improvement points based on the test results.

Control of Suspended Dust in Various Ventilation Systems of Cement Packaging Process (시멘트 포장공정에서 환기시스템에 따른 발생분진의 제어)

  • Lee, Seung-Chul;Kim, Soo-Chang;Noh, Kwang-Chul;Park, Myoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.463-469
    • /
    • 2009
  • We performed the experimental study on the control of suspended dust in a cement packaging process for various ventilation systems. To effectively remove the dust generated in the cement packaging process, three different kinds of ventilation system, such as local exhaust ventilation, electrostatic scrubber, and local air supply system, were adopted. Dust concentrations in the packaging process were measured with the variation of the airflow rate of the ventilation systems and then their ventilation performance were evaluated. From the results, we knew that the ventilation performance was the best when the local exhaust ventilation and the electrostatic scrubber were simultaneously operated in the packaging process. In the electrostatic scrubber system, the effect of the airflow rate on the indoor dust removal efficiency was negligible so hat he system ust be operated at $2,700m^3/h$ for saving power consumption.

Comparison of Liquefaction Probability Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 확률지도 비교)

  • Song, Seongwan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.5-13
    • /
    • 2021
  • The interest of expecting the liquefaction damage is increasing due to the liquefaction in Pohang in 2017. Liquefaction is defined as a phenomenon that the ground can not support the superstructure due to loss of the strength of the ground. As an alternative against this, many studies are being conducted to increase the precision and to compose a liquefaction hazard map for the purpose of identifying the scale of liquefaction damage using the liquefaction potential index (LPI). In this research, in order to analyze the degree of precision with regard to spatial interpolation objects such as LPI value and geotechnical information for LPI determination, liquefaction hazard map were made for the target area. Furthermore, based on the trend of precision, probability value was analyzed using probability maps prepared through qualitative characteristics. Based on the analysis results, the precision of the liquefaction hazard map setting the spatial interpolation object as geotechnical information is higher than that as LPI value. Furthermore, the precision of the liquefaction hazard map does not affect the distribution of the probability value.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Correction of the Ground Subsidence Risk Ratings during Open Cut Excavation (개착식 굴착공사 중 지반함몰 위험등급 분류시트의 등급 보정에 관한 연구)

  • Shin, Sang-Sik;Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Ground subsidence risk ratings obtained from the site investigation during pre-excavation stages could be changed depending on the parameters revealed during construction activities. A method of correcting the pre-excavation ground subsidence risk ratings based on the site conditions observed in the field is suggested in this study. The elevation of groundwater table during the excavation may be different from the predicted value depending on the application of waterproofing methods and construction conditions. The drastic drawdown of groundwater table during the excavation could cause ground subsidence due to soil volume decrease related to consolidation or compression of the ground, whereas the rising of groundwater table caused by the intense rainfall may result in a high potential for ground subsidence due to heaving or boiling of the excavation bottom. Excessive displacements of retaining walls or ground settlements may cause ground subsidence, which also results in a high risk of ground subsidence caused by the destruction of buried pipelines. Reevaluation of ground subsidence risk ratings is suggested considering the fluctuation of groundwater table, condition of groundwater leakage, measured ground displacements, and soil types. Finally, the ground subsidence risk rating system is improved for better evaluation by using 12 factors in 5 categories.

Design Standard and Improvement Proposal of Slope (국내외 비탈면 설계기준 및 개선방안(설계안전율 중심으로))

  • Yu, Byeong-Ok;Song, Pyeong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.296-296
    • /
    • 2008
  • 국내 절토비탈면은 이상 기후 및 건설공사의 증대로 인해 증가하고 있는 추세이며 장마철 및 태풍으로 인해 비탈면의 붕괴로 많은 인명 및 재산피해가 발생되고 있는 실정이다. 국내에서 사용되고 있는 기존의 비탈면의 설계기준은 암반의 불연속면에 대한 조사를 실시하고는 있지만 주로 암반의 굴착난이도를 토층, 리핑암, 발파암으로 구분하여 각각의 비탈면 절취경사를 결정하여 사용하는 방법을 사용하였으며 이러한 기준은 단순히 암석의 강도를 기준으로 설정되어 있으므로 암석의 공학적 특성 즉, 암반내 불연속면 방향성, 연속성, 충진물질, 마찰각, 풍화속도 등의 영향으로 공용후 비탈면 구배의 재조정 및 보강이 빈번하다. 국내외 절토비탈면의 설계기준은 각 기관별로 산재되어 있었으며 비탈면에 대한 설계 및 시공 등에 관한 기준은 도로와 철도 설계기준에 일부 반영되어 있을 뿐 항만, 댐, 택지조성 등 기타 시설 설계기준에는 비탈면에 대한 기준이 마련되어 있지 않아 표준적인 비탈면 설계기준 및 유지관리지침이 등이 필요하였다. 이러한 문제점을 보완하기 위해 2004년부터 2006까지 한국시설안전공단, 한국도로공사, 대한주택공사가 협동으로 연구한 건설공사 비탈면 설계 시공 및 유지관리에 관한 연구의 결과로 2006년도에 "건설공사 비탈면 설계기준"이 수립되었다. 이 설계기준은 건설공사에서의 기존 상이한 기준들을 정리하고 동일화하는 작업을 수행하였으며 지반의 조사에서부터 대책공까지를 막나하여 정리하였다. 그러나 최근에 급격한 기후변화로 인한 비탈면붕괴 빈번함에 따라 과거 적용되어 왔던 이들 기준을 적용하는 경우, 특히 상부 토층 및 풍화암 구간에서 많은 설계안전율을 만족하지 못해 많은 보강을 수반해야 하는 문제가 발생되고 있어 그 원인에 대한 분석을 수행하고자 하였다. 2006년도 정리된 기준은 과거에 적용하여 온 유기시의 안전율 조건을 Fs > 1.1~1.2을 적용하였던 것을 Fs > 1.2로 통일하였으며 지하수위 조건은 지표면에 위치하도록 하였다. 지하수위 조건은 풍화암 및 토층의 경우, 과거 지표면에 -3m를 적용한 시기가 있었으나 지표면에 지하수위를 적용하는 것이 일반적인 해석방법이다. 이러한 결과의 원인을 검토해 보면 다음과 같다. 첫째, 풍화암 및 토층에 적용되어 온 지반강도 정수가 과거 적용한 값보다 최근에는 작아지는 경향을 보이고 있다. 둘째, 지하수위 적용문제로 현재 지표면에 지하수위를 두어 안전율을 감소시키는 문제로 이는 최근 들어 많은 연구기관에서 강우시 간극수압의 증가에 대한 연구가 활발하게 진행되고 있다. 그러나 침투수 해석은 현행 기준에도 강우의 침투를 고려한 해석을 실시하는 경우 FS > 1.3 적용하는 것으로 되어 있으나 대부분의 해석에서는 적용이 되지 못하고 있는 실정이다. 셋째, 안전율이 과거에 주로 적용된 Fs > 1.1에서 Fs > 1.2로 상향 조정되어 우기시의 설계안전율 만족시키지 못하는 문제이다. 그러므로 이러한 문제점을 개선하기 위한 검토가 필요하며 장기적으로 이에 대한 합리적인 기준을 개정하는 작업이 추후에 수행되어야 할 것으로 판단된다.

  • PDF

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.