• Title/Summary/Keyword: Disaster Warning System

Search Result 147, Processing Time 0.029 seconds

Real-Time Monitoring and Warning System for Slope Movements Using FBG Sensor. (광섬유격자 센서를 활용한 사면거동 실시간 안전 진단 시스템)

  • 장기태;정경선;김성환;박권제;이원효;김경태;강창국;홍성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.60-76
    • /
    • 2000
  • Early detection in real-time response of slope movements ensures tremendous saving of lives and repair costs from catastrophic disaster Therefore, it is essential to constantly monitor the performance and integrity of slope-stabilizing structures such as Rock bolt, Nail and Pile during or after installation. We developed a novel monitoring system using Fiber Bragg Grating (FBG)sensor. It's advantages are highly sensitivity, small dimension and electro-magnetic immunity. capability of multiplexing, system integrity, remote sensing - these serve real-time health monitoring of the structures. Real-time strain measurement by the signal processing program is shown graphically and it gives a warning sound when the monitored strain state exceeds a given threshold level so that any sign of abnormal disturbance on the spot can be easily perceived.

  • PDF

Leveraging Social Media for Enriching Disaster related Location Trustiness (재난 관련 위치 신뢰도 향상을 위한 소셜 미디어 활용)

  • Nguyen, Van-Quyet;Nguyen, Giang-Truong;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.567-575
    • /
    • 2017
  • Location-based services play an important role in many applications such as disaster warning systems and recommendation systems. These applications often require not only location information (e.g., name, latitude, longitude, etc.) but also the impact of events (e.g., earthquake, typhoon, etc.) on locations. Recently, to provide the impact of an event on a location, how to calculate location trustiness by using multimodal information such as earthquake information and disaster sensor data is researched. In the previous approach, the linear decrement of impact value of an event is applied to obtain the location trustiness of a specific location. In this paper, we propose a new approach to enrich location trustiness, that is, the impact of an event on a location, by using social media information additionally. Firstly, we design a collecting system for earthquake information and social media data. Secondly, we present an approach of location trustiness calculation based on earthquake information. Finally, we propose a new approach to enrich location trustiness by augmenting the trustiness in spatially distributed manner based on social media.

Highway flood hazard mapping in Thailand using the Multi Criteria Analysis based the Analytic Hierarchy Process

  • Budhakooncharoen, Saisunee;Mahadhamrongchai, Wichien;Sukolratana, Jiraroth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.236-236
    • /
    • 2015
  • Flood is one of the major natural disasters affecting millions of people. Thailand also, frequently faces with this type of disaster. Especially, 2011 mega flood in Central Thailand, inundated highway severely attributed to the failure of national economic and risk to life. Lesson learned from such an extreme event caused flood monitoring and warning becomes one of the sound mitigations. The highway flood hazard mapping accomplished in this research is one of the strategies. This is due to highway flood is the potential risk to life and limb, and potential damage to property. Monitoring and warning therefore help reducing live and property losses. In this study, degree of highway flood hazard was assessed by weighting factors for each cause of the highway flood using Multi Criteria Analysis (MCA) based Analytic Hierarchy Process (AHP). These weighting factors are the essential information to classify the degree of highway flood hazard to enable pinpoint on flood monitoring and flood warning in hazard areas. The highway flood causes were then investigated. It was found that three major factors influence to the highway flood are namely the highway characteristics, the hydrological characteristics and the land topography characteristics. The weight of importance for each cause of the highway flood in the whole country was assessed by weighting 3 major factors influence to the highway flood. According to the result of MCA analysis, the highway, the hydrological and the land topography characteristics were respectively weighted as 35, 35 and 30 percent influence to the cause of highway flood. These weighting factors were further utilized to classify the degree of highway flood hazard. The Weight Linear Combination (WLC) method was used to compute the total score of all highways according to each factor. This score was later used to categorize highway flood as high, moderate and low degree of hazard levels. Highway flood hazard map accomplished in this research study is applicable to serve as the handy tool for highway flood warning. However, to complete the whole warning process, flood water level monitoring system for example the camera gauge should be installed in the hazard highway. This is expected to serve as a simple flood monitor as part of the warning system during such extreme or critical event.

  • PDF

Implementation of Flood Warning Service with Mobile GIS (모바일 GIS를 이용한 홍수 위험 경보 서비스 구현)

  • Park, Jong-Duk;Ku, Cha-Yong
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.6
    • /
    • pp.738-750
    • /
    • 2011
  • Partly due to the climate changes, flooding occurs more often than before. Particularly high urbanization causes more damages by flooding with unexpected downpours. Recent mobile telecommunication technology can help to reduce the damage by a natural disaster with quick alarming process. This research aimed to implement a flood warning GIS service system based on open source software and mobile hybrid application program with LBS. The developed system utilized location information of mobile clients for smart phone users to get alerted to flooding immediately. This service system would be very useful in urban areas to reduce the flood damages.

Analysis of administration system for lightning damage in developed countries (선진국의 낙뢰피해 관리운영체제 분석)

  • Cho, Sung-Chul;Lee, Tae-Hyung;Eom, Ju-Hong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.340-343
    • /
    • 2009
  • Recently, the lightning damage to human and structure is increasing steadily and many countries try to reduce lightning-caused casualties and economical loss through special disaster management system. The organization of warning system and management system for lightning damage in developed countries were investigated in this paper. The organization of central government for disaster management and cooperation system with local government in USA, Japan, the Britain, and Germany were introduced and the division of roles with meteorological administration were described.

  • PDF

Weather Radar Image Gener ation Method Using Inter polation based on CUDA

  • Yang, Liu;Jang, Bong-Joo;Lim, Sanghun;Kwon, Ki-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.473-482
    • /
    • 2015
  • Doppler weather radar is an important tool for meteorological research. Through several decades of development, Doppler weather radar has enormous progress in understanding, detection and warning of meso and micro scale weather system. It makes a significant contribution to weather forecast and weather disaster warning. But the large amount of data process limits the application of Doppler weather radar. This paper proposed for fast weather radar data processing based on CUDA. CDUA is a powerful platform for highly parallel programming developed by NVIDIA. Through running plenty of threads, radar data can be calculated at same time. In experiment, CUDA parallel program can significantly improve weather data processing time.

Proposed Landslide Warning System Based on Real-time Rainfall Data (급경사지 붕괴위험 판단을 위한 강우기반의 한계영역 설정 기법 연구)

  • Kim, Hong Gyun;Park, Sung Wook;Yeo, Kang Dong;Lee, Moon Se;Park, Hyuck Jin;Lee, Jung Hyun;Hong, Sung Jin
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.197-205
    • /
    • 2016
  • Rainfall-induced landslide disaster case histories are typically required to establish critical lines based on the decrease coefficient for judging the likelihood of slope collapse or failure; however, reliably setting critical lines is difficult because the number of nationwide disaster case histories is insufficient and not well distributed across the region. In this study, we propose a method for setting the critical area to judge the risk of slope collapse without disaster case history information. Past 10 years rainfall data based on decrease coefficient are plotted as points, and a reference line is established by connecting the outermost points. When realtime working rainfall cross the reference line, warning system is operating and this system can be utilized nationwide through setting of reference line for each AWS (Automatic Weather Station). Warnings were effectively predicted at 10 of the sites, and warnings could have been issued 30 min prior to the landslide movement at eight of the sites. These results indicate a reliability of about 67%. To more fully utilize this model, it is necessary to establish nationwide rainfall databases and conduct further studies to develop regional critical areas for landslide disaster prevention.

Study on Theoretical Research to Reduce Fire Risk of Solar Power System (태양광 발전 시스템의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Guen-Cull;Lee, Bong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.219-224
    • /
    • 2020
  • This study is based on the principle of solar power system and fire breakout. The result of the survey indicates that a solar power system is vulnerable to fire due to lack of maintenance after the installation. Currently the national fire safety agency does not have standards and legal provisions for the installation and maintenance of solar power facilities. Therefore, it increases the risk of fire breakouts as well as possibility of electric shock for the firefighters during fire fighting. This results possible damages to the human and equipments. In this study is proposing an automatic fire extinguishing system to reduce the power generation of solar panels during fire breakouts. Also, propose an over load current alarm system and fire prevention measures for fire fighters. The results of this study will be used as basic data for further fire testing of solar power systems.

Cost-benefit Analysis of a Farmstead-specific Early Warning Service for Agrometeorological Disaster Risk Management (농업기상재해 위험 관리를 위한 농장별 조기경보서비스의 비용편익 분석)

  • Shim, Kyo-Moon;Jeong, Hak-Kyun;Lim, Young-Ah;Shin, Yong-Soon;Kim, Yong-Seok;Choi, In-tae;Jung, Myung-Pyo;Kim, Hojung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.195-202
    • /
    • 2017
  • This study aims to suggest the basics for the implementation of the farmstead-specific early warning system (FEWS) for weather risk management nationwide. A survey by questionnaire was conducted to examine farmer's response, and a cost-benefit analysis was made to examine the effect of the FEWS on the economy. The farmers who volunteered to participate in this survey responded that they were generally satisfied with the FEWS, and that they used it well for farming. Willingness to pay (WTP) for the early warning service was estimated to be 8,833 KRW per month by survey respondents. If the early warning service is extended to nationwide and 50% of farmers use it for six months, then the ratio of benefit to cost will be 2.2, indicating that nationwide expansion of the FEWS is very feasible.

A Study on Flash Flood Warning Trigger Rainfall in Mountainous Area (산악지역 돌발홍수 기준우량 결정에 관한 연구)

  • Jun, Kye-Won;Oh, Chae-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.89-94
    • /
    • 2009
  • The purpose of this study is to estimate the critical flood discharge and flash flood trigger rainfall for alarm system providing for a flash flood in mountainous area. The flash flood need non-linear approaching method, because rainfall-runoff is nonlinear and it is difficult to explain the existing linear rainfall-runoff. Hydrological characteristics would be utilized to apply such as hydrologic modelling or basin management. This study was effectively estimated a topographic characteristic factor of basin using the GIS. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. A flash floods defined as a flood which follows shortly after a heavy or excessive rainfall event, with a few hours. In this study, we gave a definition that a critical flood for alarm is the flood when valley depth judging dangerous depth is over 0.5m depth from the bottom of channel. Result that calculate threshold discharge to use GCIUH, at the Mureung valley basin, flash flood trigger rainfall was 16.34mm in the first 20minutes when the threshold discharge was $14.54m^3/sec$.