• Title/Summary/Keyword: Disaster System

Search Result 3,135, Processing Time 0.029 seconds

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

Analysis of Forest Environmental Factors on Torrent Erosion control work area in Gyeongsangnam-do - Focus on Erosion Control Dam and Stream Conservation - (경남지역 야계사방사업지의 산림환경특성 분석 - 사방댐 및 계류보전사업을 중심으로 -)

  • Kang, Min-Jeng;Kim, Ki-Dae;Oh, Kang-San;Park, Jin-Won;Park, Jae-Hyeon
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.111-120
    • /
    • 2016
  • The objective of this study was to provide basic information for selecting the right timing and the right place of erosion control of stream on Gyeongsangnam-do. In order to achieve this objective, a total of 526 erosion control dams and 230 mountains stream conservation facilities on the constructed places and construction planned places for the erosion control were investigated on site, forest physiognomy, and hydrologic conditions. The erosion control dams and mountain stream conservation facilities were mostly constructed in the area, which has the sedimentary rock, 200-400m of altitude, a slope of 21~30°, and II of landslide hazard map. Among the forest environmental factors, it was only similar to the construction frequency in the areas that have small diameter class, III age class. Also, we investigated the hydrological environmental factors that determine the size and numbers of erosion control dam. The places constructed to the highest frequency were below 50ha in the area, 2.1~4.0km/㎢ of drainage density, longitudinal water system, 61~90mm of maximum precipitation per hour, and 201~300mm of day maximum precipitation. As the results, the sites and floodgate conditions between the constructed places and stream conservation facilities for the erosion control showed to be very similar. Therefore, these results indicate that the erosion control of the stream of the areas, which have the disruption of mountain peaks and the high erosion risk areas, should be used on both the erosion control dam and stream conservation facilities.

Study on security framework for cyber-hacking control facilities (제어시설 사이버공격 대응을 위한 사이버보안 프레임워크 (Framework) 연구)

  • Lee, Sang-Do;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.4
    • /
    • pp.285-296
    • /
    • 2018
  • Among many hacking attempts carried out in the past few years, the cyber-attacks that could have caused a national-level disaster were the attacks against nuclear facilities including nuclear power plants. The most typical one was the Stuxnet attack against Iranian nuclear facility and the cyber threat targeting one of the facilities operated by Korea Hydro and Nuclear Power Co., Ltd (Republic of Korea; ROK). Although the latter was just a threat, it made many Korean people anxious while the former showed that the operation of nuclear plant can be actually stopped by direct cyber-attacks. After these incidents, the possibility of cyber-attacks against industrial control systems has become a reality and the security for these systems has been tightened based on the idea that the operations by network-isolated systems are no longer safe from the cyber terrorism. The ROK government has established a realistic control systems defense concept and in the US, the relevant authorities have set up several security frameworks to prepare for the threats. This paper presented various cyber security attack cases and their scenarios against control systems, along with the analysis of countermeasures for them. Though this task, we attempt to identify the items that need to be considered when designing a domestic security framework to improve security and secure stability.

Flood Runoff Simulation Using GIS-Grid Based K-DRUM for Yongdam-Dam Watershed (GIS격자기반 K-DRUM을 활용한 용담댐유역 홍수유출모의)

  • Park, Jin Hyeog;Hur, Young Teck;Ryoo, Kyong Sik;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.145-151
    • /
    • 2009
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. K-DRUM (K-water hydrologic & hydaulic Distributed flood RUnoff Model) which was developed to calculate flood discharge connected to radar rainfall based on long-term runoff model developed by Kyoto- University DPRI (Disaster Prevention Research Institute), and Yondam-Dam watershed ($930km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model (K-DRUM). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

Analysis on Wettability of Soil Composed of Sand and Fine-Grained Soil with Hydrophobic Surface (모래와 세립토로 구성된 소수성 흙의 습윤성 분석)

  • Jeong-Jun Park;Kicheol Lee;Seung-Kyong You;Jung-Mann Yun;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • This study described the test results to evaluate the effect of fines content on the wettability of sandy soil composed of hydrophobic soil particles. Wettability was evaluated using the contact angle obtained from the water drop test results for Jumunjin standard sand and sandy soil containing fines content. The test results showed that the wettability of sandy soil composed of sand and fine-grained soil changed depending on the hydrophobic level and fines content. The influence of fines content on the wettability of sandy soil was analyzed. It was found that 1% and 3% hydrophobic sandy soil with 5% fines content decreased by 94.4% and 32.4%, respectively, compared to the contact angle of standard sand. In addition, the contact angle reduction ratio for sandy soil with a 5% hydrophobic level and a fines content of 5% and 10% were 24.4% and 37.3%, respectively. In other words, the wettability of the soils should be evaluated considering the fines content to predict the behavior of contaminants, because the fines content has a significant impact on the value and increase/decrease ratio of the contact angle of sandy soil

Establishing meteorological drought severity considering the level of emergency water supply (비상급수의 규모를 고려한 기상학적 가뭄 강도 수립)

  • Lee, Seungmin;Wang, Wonjoon;Kim, Donghyun;Han, Heechan;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.619-629
    • /
    • 2023
  • Recent intensification of climate change has led to an increase in damages caused by droughts. Currently, in Korea, the Standardized Precipitation Index (SPI) is used as a criterion to classify the intensity of droughts. Based on the accumulated precipitation over the past six months (SPI-6), meteorological drought intensities are classified into four categories: concern, caution, alert, and severe. However, there is a limitation in classifying drought intensity solely based on precipitation. To overcome the limitations of the meteorological drought warning criteria based on SPI, this study collected emergency water supply damage data from the National Drought Information Portal (NDIP) to classify drought intensity. Factors of SPI, such as precipitation, and factors used to calculate evapotranspiration, such as temperature and humidity, were indexed using min-max normalization. Coefficients for each factor were determined based on the Genetic Algorithm (GA). The drought intensity based on emergency water supply was used as the dependent variable, and the coefficients of each meteorological factor determined by GA were used as coefficients to derive a new Drought Severity Classification Index (DSCI). After deriving the DSCI, cumulative distribution functions were used to present intensity stage classification boundaries. It is anticipated that using the proposed DSCI in this study will allow for more accurate drought intensity classification than the traditional SPI, supporting decision-making for disaster management personnel.

Research on water quality and flow rate measurement by applying GPS electronic Floater standard experimental method when water environmental chemical accidents occur (수환경 화학사고 발생시 GPS 전자부자 표준실험법 적용을 통한 수질-수리 측정에 대한 연구)

  • Lee, Chang Hyun;Nam, Su Han;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.845-853
    • /
    • 2023
  • Recently, along with the increase in chemical accidents, the number of accidents-related disasters has been increasing continuously since 2012, and when looking at the hydrogen fluoride incident which is a representative example of domestic chemical incidents, there is insufficient technology applicable to the incident site. The result was that the damage spread. Therefore, in this paper, we will adapt the water pollution accident response system to a location-based approach, and introduce a measurement method for alternative index tracking using a GPS electronic floater of a location-based index measurement method for real-time response in the water environment when a chemical incident occurs. The research target area is Gumi City, which is the area where the hydrogen fluoride incident occurred, and Gamcheon is selected, and alternative tracking using GPS electronic floater is conducted in the corresponding target area through water quality and flow measurement. As a result, it is possible to measure water quality and flow at the same time in tracker experiments using GPS electronic floater based on the research results, it is believed that using GPS electronic floater will be of great help in disaster response systems for spill incidents in the river.

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.

Investigation on the operational state of the public food waste treatment facilities and suggestions on their efficient operational management (음식물류폐기물 공공 자원화시설의 운영실태 조사를 통한 처리공정별 효율적인 운영방안 검토)

  • Jang, Yun-Hyeok;Park, Joon-Seok;Kim, Joung-Dae;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.47-56
    • /
    • 2010
  • At present, 265 national food waste recycling facilities have been operated by public facilities 95 and private facilities 160. it has continuously installed a food waste treatment facility from 1997. The government set up and implemented guidelines and inspection standards for the installation and operation of the facilities. However, unclear detailed examination items, designs and process standards for the installation procedures of the facilities are causing problems due to the unskilled operation management system, decrease in efficiency and defects of a facility. This study conducted mail and site surveys on 95 public food waste recycling facilities that it suggest the ways to operate facilities which minimize problems. At the result of investigation, a pre-treatment facility was not installed 2 systems(2 inputting facilities) and hopper covers and food was overloaded. also the transportation amount was excessive. In case of a main treatment facility, the secondary environmental pollution was caused by inexperienced operation and the efficiency of the facility was reduced due to excessive input of food. also the operation management standards of the facilities were inappropriate. The odor and food waste leachate treatment facility is investigated as problems that are unskilled operation, lack of regular inspection and inappropriate capacity of the treatment facility. Based on the problems found through the investigation, it suggested some ways of efficient operation. this study might contribute to minimize mistakes and defects and improve the efficiency of install and operation course of food waste recycling facilities through finding.