• Title/Summary/Keyword: Disaster Prevention and Reduction

Search Result 164, Processing Time 0.03 seconds

The Safety Design of Corrosive Chemical Handling Process based on Reliability Database (신뢰도 데이터베이스 기반 부식성 화학물질 취급공정의 안전설계)

  • Chu, Chang Yeop;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.141-149
    • /
    • 2018
  • In a PCB factory, there is a corrosive chemical substance supply system that can causes major leakage accidents. These accidents can give rise to shut down the factory and do residents damage that cause enormous loss of properties. To mitigate these risks, it is necessary to provide a chemical disaster prevention system. Moreover, after considering the situation and environment of the production site, it is of great importance to build an optimal chemical accident prevention system by reflecting risk reduction measures from the point of process design and by assessing quantitative risk based on reliability data. However, because there was no established database of the reliability about facilities and equipment that can be used in the domestic, the business site and consulting organization had being used the reliability data such as USA CCPS(Center for Chemical Process Safety). In these days, Korean institutes are studying on reliability data utilization method of quantitative risk assessment for preventing chemical accidents and domestic utilization algorithms and storage bed of reliability data. This study presents samples of reliability database about the chemical substance supply system that constructed from the history data such as failure, maintenance for 10 years at a PCB factory. Also, this work proposes the safety design criteria for supply facilities of corrosive chemical substance by assessing quantitative risk on the basis of the reliability data.

Research on radar-based risk prediction of sudden downpour in urban area: case study of the metropolitan area (레이더 기반 도시지역 돌발성 호우의 위험성 사전 예측 : 수도권지역 사례 연구)

  • Yoon, Seongsim;Nakakita, Eiichi;Nishiwaki, Ryuta;Sato, Hiroto
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.749-759
    • /
    • 2016
  • The aim of this study is to apply and to evaluate the radar-based risk prediction algorithm for damage reduction by sudden localized heavy rain in urban areas. The algorithm is combined with three processes such as "detection of cumulonimbus convective cells that can cause a sudden downpour", "automatic tracking of the detected convective cells", and "risk prediction by considering the possibility of sudden downpour". This algorithm was applied to rain events that people were marooned in small urban stream. As the results, the convective cells were detected through this algorithm in advance and it showed that it is possible to determine the risk of the phenomenon of developing into local heavy rain. When use this risk predicted results for flood prevention operation, it is able to secure the evacuation time in small streams and be able to reduce the casualties.

A Numerical Study on the Occurrence Scope of Underground Cavity and Relaxation Zone Considering Sewerage Damage Width and Soil Depth (하수관거 파손폭과 토피고를 고려한 지중 공동 및 이완영역 발생 규모에 관한 수치해석적 연구)

  • You, Seung-Kyong;Ahn, HeeChul;Kim, Young-Ho;Han, Jung-Geun;Hong, Gigwon;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • This paper described a result of finite element analysis considering sewerage damage scale and soil depth, in order to analyze quantitatively for cavity and relaxation zone of underground due to sewerage damage. The mechanical model, which was verified by previous studies, was applied to the finite element analysis. In addition, the mechanical behavior of the soil around the sewerage damage due to the soil loss was simulated by using the forced displacement. Based on finite element analysis results, characteristics of the void ratio distribution, ground subsidence, and shear stress distribution according to sewerage damage scale and soil depth were analyzed. And then, The boundaries of the underground cavity and relaxation zone were determined by using the shear stress reduction characteristics of the ground. Also, an occurrence scope of the cavity and relaxation zone was quantitatively evaluated by the change of sewerage damage scale and soil depth.

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

A Study on the Improvement of the System to Reduce Damage on Ammonia Chemical Accident (암모니아 화학사고 피해를 줄이기 위한 제도개선 연구)

  • Lee, Joo Chan;Jeon, Byeong Han;Kim, Hyun Sub
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.306-313
    • /
    • 2022
  • Purpose: The purpose of this study is suggested to improve upon current existing methods of ammonia chemical accident prevention and damage reduction. Method: Ammonia is one of the most common toxic substances that causes frequent chemical accidents. And it was selected as leakage materials according to statistics on chemical accident. Based on actual cases of chemical accidents, CARIS modeling was used to compare the damage impact range of Ammonia and HCl and Cl. Also, find out problems with the current systems. Result: As a result of find out the range of accident influence that spreads to the surroundings when an ammonia chemical accident, it was longer than the range of influence of hydrochloric acid and shorter than that of chlorine. In addition, it was found that when chemical accident by ammonia, hydrochloric acid, or chlorine, there are apartments and schools, which can have an effect. Conclusion: It is decided that it is necessary to determine whether or not chemical accident prevention management plans and statistical investigations are submitted for workplaces dealing with ammonia, and detailed guidelines and reviews are necessary. In addition, it is judged that it is necessary to establish a DB for ammonia handling plants, and it is considered that information sharing and joint inspection among related organizations should be pursued.

The review about ultra long subsea tunnel design under high water pressure (고수압 초장대 해저터널에 관한 연구)

  • Jun, Duk-Chan;Kim, Ki-Lim;Hong, Eui-Joon;Kim, Chan-Dong;Lee, Young-Joon;Hong, Cheor-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.829-843
    • /
    • 2017
  • Subsea tunnel needs to be built over 50 km long to connect between nations and continents. However there are only 19 tunnels longer than 5 km until recently. And there is no history of constructing and operating tunnel longer than 50 km. In Korea, subsea tunnels with a length of more than 50 km are being planned, such as Korea~Japan, Korea~China, Honam~Jeju subsea tunnels. Because of the geographical conditions of Korea, most of these tunnels are inter-contry tunnels. So technology preemption for the subsea tunnel construction is getting more and more important. Most of these subsea tunnels are ultra-long tunnels under high water pressure conditions. So new technologies are required such as ventilation and disaster prevention of high-speed tunnels, securing of structural stability under high pressure conditions, and pressure reduction in high-speed conditions. These technologies are different from those of ground tunnels. Therefore, this paper describes the ultra-long subsea tunnel design under high water pressure of maximum 16 bars through the Honam (land) - Jeju (island) virtual subsea project. We proposed a reasonable solution to various problems such as securing structural stability in high pressure condition and ventilation disaster prevention system of ultra long-tunnel.

A Study on the Open Cut Restoration of Underground Cavity Using Concrete Mat (콘크리트매트를 이용한 개착식 지반공동 복구방법에 관한 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Chung, Yoonseok;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2019
  • This paper describes results of experimental and numerical analyses, in order to analyze a reinforcement effect of concrete mat on open cut restoration of underground cavity. The plate loading tests were conducted to evaluate a reinforcement effect of concrete mat, at reinforcement depths from the ground surface of 10 cm, 20 cm, and 30 cm. The result showed that the reduction ratio of stress (earth pressure) was about 60% at all reinforcement depth. The reinforcement effect considering ground surface settlement and reduction ratio of stress based on laboratory tests and numerical analysis was significant, at reinforcement depths from the ground surface of 10 cm~20 cm. LFWD test results showed that subgrade modulus was the largest when concrete mat was installed 20 cm below ground surface. Therefore, it is effective to reinforce concrete mat within 20 cm from the surface, when the underground cavity due to damage of underground utilities was formed in the height direction to the bottom of the pavement layer.

Determination of the Groundwater Yield of horizontal wells using an artificial neural network model incorporating riverside groundwater level data (배후지 지하수위를 고려한 인공신경망 기반의 수평정별 취수량 결정 기법)

  • Kim, Gyoo-Bum;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.583-592
    • /
    • 2018
  • Recently, concern has arisen regarding the lowering of groundwater levels in the hinterland caused by the development of high-capacity radial collector wells in riverbank filtration areas. In this study, groundwater levels are estimated using Modflow software in relation to the water volume pumped by the radial collector well in Anseongcheon Stream. Using the water volume data, an artificial neural network (ANN) model is developed to determine the amount of water that can be withdrawn while minimizing the reduction of groundwater level. We estimate that increasing the pumping rate of the horizontal well HW-6, which is drilled parallel to the stream direction, is necessary to minimize the reduction of groundwater levels in wells OW-7 and OB-11. We also note that the number of input data and the classification of training and test data affect the results of the ANN model. This type of approach, which supplements ANN modeling with observed data, should contribute to the future groundwater management of hinterland areas.

A Study on the Contribution to reducing Chemical Accident of Joint Inter-agency Chemical Emergency Preparedness Center (화학재난합동방재센터 운영을 통한 화학사고 감소 기여도 연구)

  • Kim, Sungbum;Kwak, Daehoon;Jeon, Jeonghyeon;Jeong, Seongkyeong
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.360-366
    • /
    • 2018
  • Purpose: This study operation of Joint inter-agency Chemical Emergency Preparedness Center and contribute to the reduction of chemical accidents that occur continuously. Method: The Joint inter-agency Chemical Emergency Preparedness Center functions and Chemical accident statistics data of the ('13~'17) were utilized. Results: The number of chemical accidents is decreasing from 113 in '15, 78 in '16, 87 in '17(latest five years 469 chemical accidents). The Joint inter-agency Chemical Emergency Preparedness Center is located in the industrial complex that handling a large amount of chemical, and performs functions such as prompt response, probation & investigation, accident prevention training, safety patrol. It is believed that it contributes to the decreasing of chemical accident by local control accident prevention function. Conclusion: Decreasing the safety management according to the Chemicals control act('15.1.1). The Joint inter-agency Chemical Emergency Preparedness Center('14.1 set up manage organization), which is operated as a mission to prepare respond to chemical accidents, plays a role.

Study on Guideline for the Selection of Small Stream Implementation Projects (소하천정비사업 우선순위 선정기준에 관한 연구)

  • Cheong, Tae-Sung;Kang, Byung-Hwa;Jeong, Sang-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Natural stream disasters due to a localized torrential and flash flood has occurring in a small stream especially un-implemented small stream. The survey results during ten years from 2001 to 2010 show that the small stream implementation projects (SSIPs) expenses is increasing with the damages is generally decreasing with variableness in which SSIPs is contributing to disaster prevention in a small stream. This study develop guideline for the selection of SSIPs to support high risk stream at first and save the small streams located on the mountainous area, prevention area and agricultural area which streams have no implementation effects. Developed sub items in guideline are evaluated by stream data collected from 212 small streams where it is proved that sub distance of each item are well arranged by normal distribution. This SSIPs is useful for selecting high risk small stream at first to maximize disaster risk reduction with minimum SSIPs expenses. Also, this SSIPs is used for leading to save small stream on the upstream to minimize flood damages on the down stream with selection a SSIP purchasing agricultural land for preparing flood plane.