• Title/Summary/Keyword: Disaster Monitoring

Search Result 663, Processing Time 0.029 seconds

A study on the Safety Monitoring Theory and Application for the Human Security (인간보호를 위한 안전모니터링 이론과 적용에 관한 연구)

  • Lee, Tae Shik;Seo, Jung Pyo;Seok, Geum Cheol;Cho, Won Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • This paper focused on the new theory and algorithm improving the citizen's safety which they experience to change from the developing country to the developed country, and analyzed the gained and applicate results, and show the theories and application's evidence for the incident prevention of citizen's life and house. The Safety Monitoring Theory for human security, show the six theories for which they are analyzed and reduced the accident's death, as is the priority of the disaster prevention activity, its decision, continuous minimization of the accident's death number, the environment security, the personal security, the community security. This study is applied to educate and exercise the disaster prevention and safety management's program which applied the seven step's model of the safety monitoring, show on continuously improvement effects through the case study of the personal's and team's monitoring during five years.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Application of Envisat ASAR Image in Near Real Time Flood monitoring and Assessment in China

  • Huang, Shifeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2184-2189
    • /
    • 2009
  • China is one of the countries in which flood occurs most frequently in the world and with the current economic growth; flood disaster causes more and more economic losses. Chinese government pays more attention to flood monitoring and assessment by space technology. Since1983, NOAA(AVHRR), Landsat-TM, LANDSAT-ETM+, JERS-1, SPOT, ERS-2, Radarsat-1, CBERS-1, Envisat have been used for flood monitoring and assessment. Due to the bad weather conditions during flood, microwave remote sensing is the major tools for flood monitoring. Envisat is one of the best satellite with powerful SAR. Its application for flood monitoring has been studied and its near real time(NRT) application can be realized on the basis of real-time delivery of image. During the 2005, 2006 and 2007 flood seasons, over the 31 NRT flood monitoring based on Envisat, had been carried out in Yangtze, Songua, Huaihe, pearl river basin. The result shows that Envisat SAR is very useful data source for flood disaster monitoring and assessment.

  • PDF

National Disaster Scientific Investigation and Disaster Monitoring using Remote Sensing and Geo-information (원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링)

  • Kim, Seongsam;Kim, Jinyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.763-772
    • /
    • 2019
  • High-resolution satellites capable of observing the Earth periodically enhance applicability of remote sensing in the field of national disaster management from national disaster pre-monitoring to rapid recovery planning. The National Disaster Management Research Institute (NDMI) has been developed various satellite-based disaster management technologies and applied to disaster site operations related to typhoons and storms, droughts, heavy snowfall, ground displacement, heat wave, and heavy rainfall. Although the limitation of timely imaging of satellite is a challenging issue in emergent disaster situation, it can be solved through international cooperation to cope with global disasters led by domestic and international space development agencies and disaster organizations. This article of special issue deals with the scientific disaster management technologies using remote sensing and advanced equipments of NDMI in order to detect and monitor national disasters occurred by global abnormal climate change around the Korean Peninsula: satellite-based disaster monitoring technologies which can detect and monitor disaster in early stage and advanced investigation equipments which can collect high-quality geo-information data at disaster site.

Remote Sensing and Geo-spatial Information Utilization for Managing Disaster in Korean Peninsula (한반도 재난 관리를 위한 원격탐사와 공간정보 활용기술)

  • Kim, Seongsam;Nho, Hyunju;Lee, Junwoo;Kim, Jinyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1139-1151
    • /
    • 2020
  • The National Disaster Management Research Institute(NDMI) has been developed technologies for disaster management applicability as well as disaster monitoring and damage analysis based on various earth observation platforms such as satellites, drones, and disaster field investigation vehicles. In this special issue, recent research results related to the disaster site investigation, satellite-based disaster management technology, and disaster information analysis using GIS conducted by NDMI are described in detail. Based on such achievements in the research of earth observation, we will continue to make efforts to improve the integrated national disaster investigation, analysis, and monitoring technology by connecting with the existing geo-spatial information service technology and various information collected at the disaster site.

A Study on the Monitoring Criteria of Disaster Signs for Early-warning System based on Multiple Hazardous Gas Sensor (복합 유해 가스 센서 기반의 조기 경보 시스템을 위한 재난 전조 감시 기준에 관한 연구)

  • Han, Kyusang;Park, Sosoon;Yoon, En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.28-35
    • /
    • 2013
  • The number of large and complex buildings is growing and they are usually concentrated in metropolitan cities. There is a possibility in such buildings that a small accident can expand to a massive disaster since their scale and complexity. To deal with this issue, a research on gas sensors which can detect multiple gases and early-warning systems has been conducted. Proper criteria or standards are necessary for effective application and operation of such sensor-based disaster monitoring system. In this study, we have proposed the alarm criteria of concentration of hazardous gases for the detection and the alarm release. For each alarm level, systematic disaster response plans consist of responsive actions and information delivery have been prepared. These disaster monitoring criteria can help the detection of hazardous gas-related disaster in the early stage of accident and the provision of appropriate emergency responses.

A Research Study on Monitoring for Establishing Disaster Safety Villages in Rural Areas -Based on Disaster Prevention Experience Village in Garisan-ri, Inje-gun- (농촌지역 재난안전마을 구축을 위한 모니터링 조사 연구 -인제군 가리산리 방재체험마을 중심으로-)

  • Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.398-404
    • /
    • 2017
  • In this study, the field investigation was carried out in an area damaged by flood, which recently occurred in Chungcheong region, in order to establish a disaster safety village in a rural area. In addition, the history and characteristics of a village in Garisan-ri, Inje-gun, Gangwon-do that experienced loss of life and property caused by flood in 2006 were analyzed through monitoring. The village was restored and has been operated as a disaster prevention experience village for the purpose of disaster prevention, and its structural and non-structural status was monitored during the analysis. Based on the results, application measures for establishing a disaster safety village in a rural area in future were examined. At the time of restoring food damage, the residents' participation was actively reflected in the process of establishing the disaster prevention experience village in Garisan-ri. The village has been currently operated until now as an example of disaster safety village in rural regions, and various activities including training and educational programs are carried out in order to reinforce the disaster prevention capability of residents. The findings of this study can be used for establishing a disaster safety village in a rural area based on such characteristics.

Inclinometer-based method to monitor displacement of high-rise buildings

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2018
  • Horizontal displacement of high-rise building is an essential index for assessing the structural performance and safety. In this paper, a novel inclinometer-based method is proposed to address this issue and an algorithm based on three spline interpolation principle is presented to estimate the horizontal displacement of high-rise buildings. In this method, the whole structure is divided into different elements by different measured points. The story drift angle curve of each element is modeled as a three spline curve. The horizontal displacement can be estimated after integration of the story drift angle curve. A numerical example is designed to verify the proposed method and the result shows this method can effectively estimate the horizontal displacement with high accuracy. After that, this method is applied to a practical slender structure - Shanghai Tower. Nature frequencies identification and deformation monitoring are conducted from the signal of inclinometers. It is concluded that inclinometer-based technology can not only be used for spectrum analysis and modal identification, but also for monitoring deformation of the whole structure. This inclinometer-based technology provides a novel method for future structural health monitoring.

Implementation of UWB Indoor Positioning and Real-time Remote Control System for Disaster Monitoring based on Digital Twin (재난 감시 디지털 트윈을 위한 UWB 실내 측위 및 실시간 원격제어 시스템 구현)

  • Yu, Da-Song;Kim, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1682-1692
    • /
    • 2021
  • Digital Twin, one of the core technologies of the Fourth Industrial Revolution, is attracting attention as a very suitable technology for disaster monitoring such as fires and earthquakes. In this paper, we implement a system equipped with UWB RTLS(Ultra-Wideband Real Time Location System), real-time remote control, and video streaming, which are element technologies for disaster monitoring digital twin. Since the proposed system structure is based on a cloud server, the actual location of the UWB indoor positioning-based client is transmitted to the user device in real time and stored on the cloud server for statistical and data analysis. In addition, we demonstrate through experiments that outliers occurs when the value of RSSI(Received Signal Strength Indicator) decreases due to communication collisions between UWB Tags, and propose an RSSI outlier correction algorithm to solve this problem.