• Title/Summary/Keyword: Disassemblability

Search Result 21, Processing Time 0.026 seconds

Determination of Design Parameters for Automobile Parts Recycling (자동차 부품의 재활용을 위한 설계시의 주요인자 결정)

  • 목학수;문광섭;박홍석;성재현;최흥원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.159-171
    • /
    • 2003
  • In this paper, same parts of a domestic automobiles and foreign automobiles are disassembled fur the evaluation of disassemblability, especially door trim and bumper. Influencing factors of disassembly are determined by the classification of bottleneck process in disassembly process. On the bases of disassembly sequence and structure of parts and subassembly, disassemblability is classified into aye categories. The influencing factors, which are related with the five categories are determined. By these relations, the checklist for disassembly evaluation is draw up and score tables of checked factors are established. For the establishing the disassembly score tables, the weighting values of each five categories are calculated by the disassembly test of automobiles and then, the weighting values of each influencing factors of five categories are calculated by the method of AHP (Analytic Hierarchy Process). And the last, the weighting values are modified and recalculated from the disassembly test. Using these weighting values, the score of influencing factors are determined and then, the score tables are established based on the score of influencing factors.

Disassemblability of Mechanical Parts in Automobile for Recycling of Materials (자원 재활용을 위한 부품의 분리 용이성)

  • Mok, Hak-Soo;Chung, Hyun-Kyo;Park, Ju-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.153-166
    • /
    • 1996
  • It is important to make use of the scrapped materials, components, and subassemblies which have still high quality and reliability in an out of service cars from the view point of economy and environment. In this paper, we studied geometrical and material characteristics of parte, subassemblies and joining elements to be assembled in designing a car. The mechanism of disassembly between parts and subassemblies is analyzed in order to disassemble recyclable parts in a scrapped automobile. The weak points of disassembly process are analyzed and the parameters for disassemblability are defined. And the guidelines for disassemblability are developed.

  • PDF

Disassemblability Evaluation Method & Application using Axiomatic Approach (정보공리적 분해성 평가 방법과 적용)

  • Kim, Young-Kyu;Cho, Kyu-Kab;Cha, Sung-Woon;Jeong, Sang-Jin;Kweon, Sung-Woo
    • IE interfaces
    • /
    • v.14 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • The paper describes disassemblability evaluation method using axiomatic approach. In recent industry, it is necessary to develope high recyclable environmental product due to green consumer and environmental regulations. Disassembly stage is prior to recycling. Disaassembly time data is determined previously in order to calculate the disassembly segments and disassembly sequence. In this paper the evaluation method of disassembly segment/sequence and disassembly time database are suggested. A case study of monitor product was showed.

  • PDF

On the Generation of Line Balanced Assembly Sequences Based on the Evaluation of Assembly Work Time Using Neural Network (신경회로망기법에 의한 조립작업시간의 추정 및 라인밸런싱을 고려한 조립순서 추론)

  • 신철균;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.339-350
    • /
    • 1994
  • This paper presents a method for automatic generation of line balanced assembly sequences based on disassemblability and proposes a method of evaluating an assembly work time using neural networks. Since a line balancing problem in flexible assembly system requires a sophisticated planning method, reasoning about line balanced assembly sequences is an important field of concern for planning assembly lay-out. For the efficient inference of line balanced assembly sequences, many works have been reported on how to evaluate an assembly work time at each work station. However, most of them have some limitations in that they use cumbersome user query or approximated assembly work time data without considering assembly conditions. To overcome such criticism, this paper proposes a new approach to mathematically verify assembly conditions based on disassemblability. Based upon the results, we present a method of evaluating assembly work time using neural networks. The proposed method provides an effective means of solving the line balancing problem and gives a design guidance of planning assembly lay-out in flexible assembly application. An example study is given to illustrate the concepts and procedure of the proposed scheme.

Modular design of product considering disassemblability (분리용이성을 고려한 제품의 모듈설계)

  • Mok, Hak-Su;Hwang, Hun;Yang, Tae-Il
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.546-549
    • /
    • 2000
  • In this paper, to propose guideline of modular design for improvement of ease of disassembly, product structure must be considered. By analyzing characteristics of structure of subassembly, influencing factor of module can be defined and classified. Based on determination factor of influencing factor of module, criteria for improvement of ease of disassembly can be obtained through the interrelationship between product and process factors.

  • PDF

Recyclability Estimation of Fuel Tank Module in Vechicle (자동차 연료탱크 모듈의 재활용성 평가)

  • Lee, Chul-Min;Lee, Eun-Ok;Kim, Ha-Su;Lee, Jun-Su;Kang, Hee-Yong;Yang, Sung-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.127-135
    • /
    • 2006
  • We analyzed recyclability of the fuel tanks made from steel or aluminum alloy. For a comparison of the fuel tank recyclability, first we had analyzed the process of disassembly in a vehicle and evaluated its disassemblability. Then we evaluated the recyclability for reuse and withdrawal. The processes were more or less same owing to the similarity of fastening method of fuel tank and components. However, the fuel tank of the aluminum alloy was easier (about 5%) to disassembly than the fuel tank of steel. This could be attributed to the differences in weight of steel and aluminium. On light of the withdrawal and reuse, the fuel tank made up of steel needed to plate with zinc or lead due to its anti-corrosiveness. Hence, it required additional processes. In this paper, we were explaining the results of our on going research on the recyclability of fuel tanks made of steel and aluminum alloys. The differences that we found between the fuel tank made up of the aluminum alloy and steel were in their weight, recyclability, disassemblability, anticorrosive property, cost and productivity.

Development of Product Design Methodology for Assemblability and Disassemblability Considering Recycling (재활용을 고려한 조립 및 분리용이성을 위한 제품 설계 방법론 개발)

  • Mok, Hak-Soo;Cho, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.72-84
    • /
    • 2001
  • This paper proposes a design methodology for customer, assembly and disassembly considering recycling. The disign process starts with the identification of customer needs, which are in turn converted into functional requirements. The concepts of Design for Customer(DFC), Design for Assembly(DFA), Design for Variety(DFV) and Design for Disassembly(DFD) are considered in the product design phases in order to decreas production variety and mass customization. And, a new module generation approach is developed for rearranging and clustering parts and subassemblies for disassembly and recycling. Based on the result of the module generation, a new configuration methodology is suggested to minimize the disassembly time or number of disassembly operations for recycling.

  • PDF

A Study on Deciding Priority of Optimal Design Guide for Disassembly Process (분리공정 개선을 위한 설계 가이드 우선순위 결정방법론)

  • Mok, Hak-Soo;Lee, Jae-Sung;Cho, Jong-Rae
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.414-425
    • /
    • 2004
  • This study presents the decision of priority for optimal design guide to improve disassembly process. Disassembly process is divided into recognition, transfer and disassembly of assembly point and recognition, transfer and remove of grasp point. Significant influential factors are derived from analyzing the above process. And those factors are used for making the check list to evaluate the properties of parts in each process. Furthermore, the weight with considering disassembly process is also used to determine weight of each process. On the base of the above sequence, qualitative score of disassemblability of each process that is enabled to compare different disassembly processes can be acquired. Ultimately the score helps to decide the priority of design guide for disassembly process.