• Title/Summary/Keyword: Dirty paper coding (DPC)

Search Result 9, Processing Time 0.021 seconds

Triangulation Algorithm for Multi-user Spatial Multiplexing in MIMO Downlink Channels (MIMO 다운링크 채널에서 다중사용자 공간다중화를 위한 알고리즘)

  • Lee, Heun-Chul;Paulraj, Aroyaswami;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.45-54
    • /
    • 2010
  • This paper studies the design of a multiuser multiple-input multiple-output (MIMO) system, where a base station (BS) transmits independent messages to multiple users. The remarkable "dirty paper coding (DPC)" result was first presented by Costa that the capacity does not change if the Gaussian interference is known at the transmitter noncausally. While several implementable DPC schemes have been proposed recently for single-user dirty-paper channels, DPC is still difficult to implement directly in practical multiuser MIMO channels. In this paper, we propose a network channel matrix triangulation (NMT) algorithm for utilizing interference known at the transmitter. The NMT algorithm decomposes a multiuser MIMO channel into a set of parallel, single-input single-output dirty-paper subchannels and then successively employs the DPC to each subchannel. This approach allows us to extend practical single-user DPC techniques to multiuser MIMO downlink cases. We present the sum rate analysis for the proposed scheme. Simulation results show that the proposed schemes approach the sum rate capacity of the multiuser MIMO downlink at moderate signal-to-noise ratio (SNR) values.

Efficient User Selection Algorithms for Multiuser MIMO Systems with Zero-Forcing Dirty Paper Coding

  • Wang, Youxiang;Hur, Soo-Jung;Park, Yong-Wan;Choi, Jeong-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.232-239
    • /
    • 2011
  • This paper investigates the user selection problem of successive zero-forcing precoded multiuser multiple-input multiple-output (MU-MIMO) downlink systems, in which the base station and mobile receivers are equipped with multiple antennas. Assuming full knowledge of the channel state information at the transmitter, dirty paper coding (DPC) is an optimal precoding strategy, but practical implementation is difficult because of its excessive complexity. As a suboptimal DPC solution, successive zero-forcing DPC (SZF-DPC) was recently proposed; it employs partial interference cancellation at the transmitter with dirty paper encoding. Because of a dimensionality constraint, the base station may select a subset of users to serve in order to maximize the total throughput. The exhaustive search algorithm is optimal; however, its computational complexity is prohibitive. In this paper, we develop two low-complexity user scheduling algorithms to maximize the sum rate capacity of MU-MIMO systems with SZF-DPC. Both algorithms add one user at a time. The first algorithm selects the user with the maximum product of the maximum column norm and maximum eigenvalue. The second algorithm selects the user with the maximum product of the minimum column norm and minimum eigenvalue. Simulation results demonstrate that the second algorithm achieves a performance similar to that of a previously proposed capacity-based selection algorithm at a high signal-to-noise (SNR), and the first algorithm achieves performance very similar to that of a capacity-based algorithm at a low SNR, but both do so with much lower complexity.

3-User Dirty Paper Precoding (세 명의 다중 사용자 채널에서의 더티 페이퍼 전처리 코딩)

  • Lee, Moon-Ho;Park, Ju-Yong;Shin, Tae-Chol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In this paper, we design on nonliner 3 user Dirty Paper Precoding for MIMO adjacant interference signal cancellation based on 3 GPP LTE Release 10. In this paper, in order to reduce the inter-channel interference at the transmitted side, we propose the Dirty Paper Precoding scheme for 3-user MIMO wireless systems using LQ decomposition and Gram-Schmidt algorithm based in its orthonormal basis.

Sum-Rate Capacity with Fairness in Correlated MIMO Broadcast Channels

  • Lee, Seung-Hwan;Kim, Jin-Up
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.124-129
    • /
    • 2009
  • Although the maximum sum-rate capacity of multiple-input multiple output(MIMO) broadcast channels(BCs) can be achieved by dirty-paper coding(DPC), the results were obtained without fairness considerations in uncorrelated MIMO channels. In this paper, we propose new multiuser scheduling algorithms, which find a best user set for approaching the maximum sum-rate capacity while maintaining fairness among users. We analyze the performance of the proposed algorithms using zero-forcing dirty paper coding(ZF-DPC) in the correlated MIMO BCs for throughput and delay fairness, respectively. Numerical results demonstrate that a large time window can reduce the average throughput difference between users, but it increases head-of-line(HOL) delay jitters in the case of delay fairness.

Achievable Sum Rate Enhancement by Sectorization for Dirty Paper Coding Aided Multihop Cellular Networks (Dirty Paper Coding을 이용한 다중 도약 셀룰러 네트워크에서 Sectorization을 통한 전송률 향상)

  • Park, Sung-Soo;Song, Hyung-Joon;Lim, Sung-Mook;You, Cheol-Woo;Hong, Dae-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.241-242
    • /
    • 2008
  • This paper proposes a sectorization and exclusive subcarrier allocation technique for dirty paper coding (DPC) aided orthogonal frequency division multiple access (OFDMA) multihop cellular networks. Simulation result shows that the proposed technique significantly increases the achievable sum rate compared to the conventional mobile station selection approach.

  • PDF

A Comparison of TDMA, Dirty Paper Coding, and Beamforming for Multiuser MIMO Relay Networks

  • Li, Jianing;Zhang, Jianhua;Zhang, Yu;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • A two-hop multiple-input multiple-output (MIMO) relay network which comprises a multiple antenna source, an amplify-and-forward MIMO relay and many potential users are studied in this paper. Consider the achievable sum rate as the performance metric, a joint design method for the processing units of the BS and relay node is proposed. The optimal structures are given, which decompose the multiuser MIMO relay channel into several parallel single-input single-output relay channels. With these structures, the signal-to-noise ratio at the destination users is derived; and the power allocation is proved to be a convex problem. We also show that high sum rate can be achieved by pairing each link according to its magnitude. The sum rate of three broadcast strategies, time division multiple access (TDMA) to the strongest user, dirty paper coding (DPC), and beamforming (BF) are investigated. The sum rate bounds of these strategies and the sum capacity (achieved by DPC) gain over TDMA and BF are given. With these results, it can be easily obtained that how far away TDMA and BF are from being optimal in terms of the achievable sum rate.

Joint Precoding Technique for Interference Cancellation in Multiuser MIMO Relay Networks for LTE-Advanced System (LTE-Advanced 시스템의 다중 사용자 MIMO Relay 네트워크에서 간섭 제거를 위한 Joint Precoding 기술)

  • Malik, Saransh;Moon, Sang-Mi;Kim, Bo-Ra;Kim, Cheol-Sung;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.15-26
    • /
    • 2012
  • In this paper, we perform interference cancellation in multiuser MIMO (Multiple Input Multiple Output) relay network with improved Amplify-and-Forward (AF) and Decode-and-Forward (DF) relay protocols. The work of interference cancellation is followed by evolved NodeB (eNB), Relay Node (RN) and User Equipment (UE) to improve the error performance of whole transmission system with the explicit use of relay node. In order to perform interference cancellation, we use Dirty Paper Coding (DPC) and Thomilson Harashima Precoding (THP) allied with detection techniques Zero Forcing (ZF), Minimum Mean Square Error (MMSE), Successive Interference Cancellation (SIC) and Ordered Successive Interference Cancellation (OSIC). These basic techniques are studied and improved in the proposal by using the functions of relay node. The performance is improved by Decode-and-Forward which enhance the cancellation of interference in two layers at the cooperative relay node. The interference cancellation using weighted vectors is performed between eNB and RN. In the final results of the research, we conclude that in contrast with the conventional algorithms, the proposed algorithm shows better performance in lower SNR regime. The simulation results show the considerable improvement in the bit error performance by the proposed scheme in the LTE-Advanced system.

Modified Block Diagonalization Precoding with Greedy Approach (Greedy 기법을 이용한 수정된 블록 대각화 프리코딩 기법)

  • Kim, Sung-Tae;Seo, Woo-Hyun;Kwak, Kyung-Chul;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.79-85
    • /
    • 2008
  • Dirty Paper Coding(DPC) can achieve the sum capacity of a multiuser multiple-input multiple-output(MU MIMO) broadcast channels. However, due to the high computational complexity of the successive encoding and decoding, deploying DPC in real systems is impractical. As one of practical alternatives to DPC, Block Diagonalization(BD) was researched. BD is an extension of the zero-forcing preceding technique that eliminates interuser interference(IUI) in downlink MIMO systems. Though BD has lower complexity than DPC, BD shows poor sum capacity performance. We show that sum capacity performance of BD is degraded due to no IUI constraint. Then, we modify BD to improve its sum capacity performance with relaxing the constraint and sub optimal channel set searching. With simulation results, it can be verified that our modification in BD induces some improvement in sum capacity performance.

QoS-Guaranteed Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.;Kim, Jin-Up
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.481-488
    • /
    • 2009
  • This paper proposes a new multiuser scheduling algorithm that can simultaneously support a variety of different quality-of-service (QoS) user groups while satisfying fairness among users in the same QoS group in MIMO broadcast channels. Toward this goal, the proposed algorithm consists of two parts: a QoS-aware fair (QF) scheduling within a QoS group and an antenna trade-off scheme between different QoS groups. The proposed QF scheduling algorithm finds a user set from a certain QoS group which can satisfy the fairness among users in terms of throughput or delay. The antenna trade-off scheme can minimize the QoS violations of a higher priority user group by trading off the number of transmit antennas allocated to different QoS groups. Numerical results demonstrate that the proposed QF scheduling method satisfies different types of fairness among users and can adjust the degree of fairness among them. The antenna trade-off scheme combined with QF scheduling can improve the probability of QoS-guaranteed transmission when supporting different QoS groups.