• Title/Summary/Keyword: Dirichlet form

Search Result 53, Processing Time 0.019 seconds

AN ABSTRACT DIRICHLET PROBLEM IN THE HILBERT SPACE

  • Hamza-A.S.Abujabal;Mahmoud-M.El-Boral
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • In the present paper we consider an abstract partial dif-ferential equation of the form $\frac{\partial^2u}{{\partial}t^2}-\frac{\partial^2u}{{\partial}x^2}+A(x.t)u=f(x, t)$, where ${A(x, t):(x, t){\epsilon}\bar{G} }$ is a family of linear closed operators and $G=GU{\partial}G$, G is a suitable bounded region in the (x, t)-plane with bound-are ${\partial}G$. It is assumed that u is given on the boundary ${\partial}G$. The objective of this paper is to study the considered Dirichlet problem for a wide class of operators $A(x, t)$. A Dirichlet problem for non-elliptic partial differential equations of higher orders is also considerde.

Nonparametric Bayesian Multiple Comparisons for Dependence Parameter in Bivariate Exponential Populations

  • Cho, Jang-Sik;Ali, M. Masoom;Begum, Munni
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.71-80
    • /
    • 2006
  • A nonparametric Bayesian multiple comparisons problem (MCP) for dependence parameters in I bivariate exponential populations is studied here. A simple method for pairwise comparisons of these parameters is also suggested. Here we extend the methodology studied by Gopalan and Berry (1998) using Dirichlet process priors. The family of Dirichlet process priors is applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation of the posterior probabilities of all possible hypotheses are carried out through Markov Chain Monte Carlo method, namely, Gibbs sampling, due to the intractability of analytic evaluation. The whole process of MCP for the dependent parameters of bivariate exponential populations is illustrated through a numerical example.

  • PDF

A FINITE ELEMENT SOLUTION FOR THE CONSERVATION FORM OF BBM-BURGERS' EQUATION

  • Ning, Yang;Sun, Mingzhe;Piao, Guangri
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.495-509
    • /
    • 2017
  • With the accuracy of the nonlinearity guaranteed, plenty of time and large memory space are needed when we solve the finite element numerical solution of nonlinear partial differential equations. In this paper, we use the Group Element Method (GEM) to deal with the non-linearity of the BBM-Burgers Equation with Conservation form and perform a numerical analysis for two particular initial-boundary value (the Dirichlet boundary conditions and Neumann-Dirichlet boundary conditions) problems with the Finite Element Method (FEM). Some numerical experiments are performed to analyze the error between the exact solution and the FEM solution in MATLAB.

THE EIGENVALUE ESTIMATE ON A COMPACT RIEMANNIAN MANIFOLD

  • Kim, Bang-Ok;Kim, Kwon-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.19-23
    • /
    • 1995
  • We will estimate the lower bound of the first nonzero Neumann and Dirichlet eigenvalue of Laplacian equation on compact Riemannian manifold M with boundary. In case that the boundary of M has positive second fundamental form elements, Ly-Yau[3] gave the lower bound of the first nonzero neumann eigenvalue $\eta_1$. In case that the second fundamental form elements of $\partial$M is bounded below by negative constant, Roger Chen[4] investigated the lower bound of $\eta_1$. In [1], [2], we obtained the lower bound of the first nonzero Neumann eigenvalue is estimated under the condtion that the second fundamental form elements of boundary is bounded below by zero. Moreover, I realize that "the interior rolling $\varepsilon$ - ball condition" is not necessary when the first Dirichlet eigenvalue was estimated in [1].ed in [1].

  • PDF

NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF BOUNDARY VALUE PROBLEM FOR SECOND ORDER PARABOLIC EQUATION

  • Choi, Jongkeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1123-1148
    • /
    • 2016
  • The aim of this note is to provide detailed proofs for local estimates near the boundary for weak solutions of second order parabolic equations in divergence form with time-dependent measurable coefficients subject to Neumann boundary condition. The corresponding parabolic equations with Dirichlet boundary condition are also considered.

ON SOME PROPERTIES OF BARRIERS AT INFINITY FOR SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

  • Cho, Sungwon
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • We consider the boundary value problem with a Dirichlet condition for a second order linear uniformly elliptic operator in a non-divergence form. We study some properties of a barrier at infinity which was introduced by Meyers and Serrin to investigate a solution in an exterior domains. Also, we construct a modified barrier for more general domain than an exterior domain.

THE FRACTIONAL TOTIENT FUNCTION AND STURMIAN DIRICHLET SERIES

  • Kwon, DoYong
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • Let ${\alpha}$ > 0 be a real number and $(s_{\alpha}(n))_{n{\geq}1}$ be the lexicographically greatest Sturmian word of slope ${\alpha}$. We investigate Dirichlet series of the form ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-s}$. To do this, a generalization of Euler's totient function is required. For a real ${\alpha}$ > 0 and a positive integer n, an arithmetic function ${\varphi}{\alpha}(n)$ is defined to be the number of positive integers m for which gcd(m, n) = 1 and 0 < m/n < ${\alpha}$. Under a condition Re(s) > 1, this paper establishes an identity ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-S}=1+{\sum}^{\infty}_{n=1}{\varphi}_{\alpha}(n)({\zeta}(s)-{\zeta}(s,1+n^{-1}))n^{-s}$.

STRUCTURE OF STABLE MINIMAL HYPERSURFACES IN A RIEMANNIAN MANIFOLD OF NONNEGATIVE RICCI CURVATURE

  • Kim, Jeong-Jin;Yun, Gabjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1201-1207
    • /
    • 2013
  • Let N be a complete Riemannian manifold with nonnegative Ricci curvature and let M be a complete noncompact oriented stable minimal hypersurface in N. We prove that if M has at least two ends and ${\int}_M{\mid}A{\mid}^2\;dv={\infty}$, then M admits a nonconstant harmonic function with finite Dirichlet integral, where A is the second fundamental form of M. We also show that the space of $L^2$ harmonic 1-forms on such a stable minimal hypersurface is not trivial. Our result is a generalization of one of main results in [12] because if N has nonnegative sectional curvature, then M admits no nonconstant harmonic functions with finite Dirichlet integral. And our result recovers a main theorem in [3] as a corollary.