A problem of selecting the least probable cell in a multinomial distribution is studied in a Bayesian framework. We consider two loss components the cost of sampling and the difference in cell probabilities between the selected and the least probable cells. A Bayes sequential selection rule is derived with respect to a Dirichlet prior, and it is compared with the best fixed sample size selection rule. The continuation sets with respect to the vague prior are tabulated for certain cases.
Communications for Statistical Applications and Methods
/
제14권1호
/
pp.81-92
/
2007
This paper consider trinomial group testing concerned with classification of N given units into one of k disjoint categories. In this paper, we propose Bayesian inference for estimating individual category proportions using the trinomial group testing model proposed by Bar-Lev et al. (2005). We compared a relative efficience (RE) based on the mean squared error (MSE) of MLE and Bayes estimators with various prior information. The impact of different prior specifications on the estimates is also investigated using selected prior distribution. The impact of different priors on the Bayes estimates is modest when the sample size and group size we large.
Journal of Information Science Theory and Practice
/
제9권1호
/
pp.35-53
/
2021
The study reported in this paper aimed to evaluate the topics and opinions of COVID-19 discussion found on Twitter. It performed topic modeling and sentiment analysis of tweets posted during the COVID-19 outbreak, and compared these results over space and time. In addition, by covering a more recent and a longer period of the pandemic timeline, several patterns not previously reported in the literature were revealed. Author-pooled Latent Dirichlet Allocation (LDA) was used to generate twenty topics that discuss different aspects related to the pandemic. Time-series analysis of the distribution of tweets over topics was performed to explore how the discussion on each topic changed over time, and the potential reasons behind the change. In addition, spatial analysis of topics was performed by comparing the percentage of tweets in each topic among top tweeting countries. Afterward, sentiment analysis of tweets was performed at both temporal and spatial levels. Our intention was to analyze how the sentiment differs between countries and in response to certain events. The performance of the topic model was assessed by being compared with other alternative topic modeling techniques. The topic coherence was measured for the different techniques while changing the number of topics. Results showed that the pooling by author before performing LDA significantly improved the produced topic models.
Communications for Statistical Applications and Methods
/
제29권3호
/
pp.287-299
/
2022
In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.
본 논문에서는 디리클레 분포와 베이즈 추론 모델을 활용하여 전자우편을 분류하고 정리하는 방법을 제안한다. 과거 원치 않는 광고성 이메일인 스팸 탐지에서 시작한 전자우편 분류는 지속적인 송수신 량의 증가와 내용의 다양화로 인해 광고성과 정보성의 판단 기준이 모호해진 상태이다. 스팸 탐지와 같은 이분법적 분류 방식이 아닌 내용의 주제 별로 자동 분류할 수 있는 방법이 필요하다. 본 논문에서 다루는 제안 기법은 전자우편의 내용에서 다뤄질 수 있는 주제의 종류를 예측하기 위한 방법을 제공한다. 발신하거나 수신된 전자우편이 속한 주제를 자동으로 정할 수 있다. 본 제안 기법의 활용을 통해 전자우편의 분류만이 아닌 업무 및 시장 동향 분석과 정보보안 분야에서는 악성코드 분류에 사용될 수 있을 것으로 기대된다.
생물학 도메인은 약어 표현이 빈번하며, 실제로 문서에서 중요한 의미를 지니는 개체명들이 약어로 표현되는 경우가 많다. 본 연구에서는 토픽과 링크 정보를 이용하여 약어 중의성을 해결하고 동일한 의미를 가지는 다양한 형태의 약어 원형들(variant forms)에 대한 그룹핑을 시도한다. 이를 위하여 LDA(latent Dirichlet allocation) 기반 의미적 의존 링크 토픽 모델(semantic dependency topic model)을 제안한다. 해당 모델은 생성 모델(generative model)의 일종으로 문서 집합의 각 문서에 등장하는 단어들은 문서에서 발생하는 토픽 분포와 토픽 당 단어 분포에 의해 생성되어 있는 것으로 가정하고, 관측 가능한 문서 집합의 단어들로부터 문서에 내재된 숨어있는 토픽 구조를 추론하여 단어 생성과 토픽 파라미터를 연결시킨다. 본 연구에서는 토픽 정보 외에 단어들 사이에 존재하는 의미적 의존성(semantic dependency)을 링크로 정의하고, 단어 간에 존재하는 링크 정보, 특히 원형과 문장에서 공기하는 단어들 사이의 링크를 파라미터화하여 중의성 해결에 이용하였다. 결과적으로 주어진 문서에 등장하는 약어에 대해 가장 가능성 있는 원형은 해당 모델을 이용하여 추론된 단어-토픽, 문서-토픽, 단어-링크 확률에 의해서 결정된다. 제안하는 모델은 MEDLINE 초록으로부터 Entrez 인터페이스를 이용해 22개의 약어 집합과 186개의 가능한 약어 원형을 이용하여 질의를 생성하고, 이를 이용해 검색된 문서들을 대상으로 학습과 테스트에 이용하였다. 실험은, 주어진 문서에 등장하는 해당 약어에 대한 원형이 무엇인지 예측하는 방식으로 98.3%의 정확률의 높은 성능을 보였다.
In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.
Purpose: As one of the ongoing studies on the distribution industry, the purpose of this study is to identify the research trends on online shopping so far to propose not only the development of online shopping companies but also the possibility of coexistence between online and offline retailers and the development of the distribution industry. Research design, data and methodology: In this study, the English abstracts of 645 papers on online shopping registered in scienceON were obtained. For the analysis through BERTopic and LDA using Python 3.7 and identifying which topics were interesting to researchers. Results: As a result of word frequency analysis and co-occurrence analysis, it was found that studies related to online shopping were frequently conducted on factors such as products, services, and shopping malls. As a result of BERTopic, five topics such as 'service quality' and 'sales strategy' were derived, and as a result of LDA, three topics including 'purchase experience' were derived. It was confirmed that 'Customer Recommendation' and 'Fashion Mall' showed relatively high interest, and 'Sales Strategy' showed relatively low interest. Conclusions: It was suggested that more diverse studies related to the online shopping mall platform, sales content, and usage influencing factors are needed to develop the online shopping industry.
대전 식품냉동저장창고 파일럿 공동주위의 거리에 따른 비정상상태의 온도 분포를 산정하기 위해 Claesson(2001)의 해석해 및 Dirichlet과 Neuman 내부 경계조건을 갖는 수치모델들을 검토하였다. 온도 강하 단계동안 일정 표면 온도 경계조건에 기초하고 있는 Claesson의 해석해를 활용한 결과, 실제 암반에서의 온도 계측결과를 오차 평균 0.89$^{\circ}C$ 수준으로서 비교적 정확히 예측할 수 있었는데, $0^{\circ}C$근처의 실험실 암석 열물성을 입력하였고 현지 암반 조건을 표현하기 위한 특별한 물성 보정을 하지 않았다. 내부 공동 암반 벽면을 통한 열유속을 갖는 수치해석의 경우, 대류 열전달계수와 공동 내부 온도가 냉각시간에 따라 변화하기 때문에 경계조건을 가하기 어려운 단점을 극복하기 위해 새로운 경계조건 설정 기법을 제안하였다. 그 결과 오차 평균 1.58$^{\circ}C$의 수준으로서 온도 계측치와 부합하였다. 또한 공동 벽면에서 고정 온도 조건을 갖는 수치해와 비교하였다. 마지막으로 Claesson의 해석해 및 다양한 내부 경계조건을 갖는 수치모델을 활용하여, 공동 주변의 온도 분포를 정확히 예측할 수 있는 일련의 해석 단계 프로그램을 제안하였다.
지능형 감시 분야에서 이상행위를 검출하는 것은 오랫동안 연구되어온 주제로 다양한 방법들이 제안되어 왔다. 그러나 많은 연구가 움직이는 객체의 개별적인 추적이 가능하다는 것을 전제로 하여 찾은 가려짐이 발생하는 실생활에 적용하는데 한계가 있다. 본 논문에서는 객체 추적이 어려운 복잡한 환경에서 장면의 주된 움직임을 분석하여 비정상적인 행위를 검출하는 방법을 제안한다. 먼저, 입력영상에서 움직임 정보를 추출하여 Visual Word와 Visual Document를 생성하고, 문서 분석 기법 중 하나인 LDA(Latent Dirichlet Allocation 알고리즘을 이용하여 장면의 주요한 움직임 정보j위치, 크기, 방향, 분포)를 추출한다. 이렇게 분석된 장면의 주요한 움직임과 입력영상에서 발생한 움직임과의 유사도를 분석하여 주요한 움직임에서 벗어나는 움직임을 비정상적인 움직임으로 간주하고 이를 이상행위로 검출하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.