References
- Bianchi, F., Terragni, S., Hovy, D., Nozza, D., & Fersini, E. (2020). Cross-lingual contextualized topic models with zero-shot learning. arXiv preprint arXiv:2004.07737.
- Blei, D. M., & Lafferty, J. D. (2006, June). Dynamic topic models. In Proceedings of the 23rd international conference on Machine learning (pp. 113-120).
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
- Bodrunova, S. S., Orekhov, A. V., Blekanov, I. S., Lyudkevich, N. S., & Tarasov, N. A. (2020). Topic detection based on sentence embeddings and agglomerative clustering with markov moment. Future Internet, 12(9), 144. https://doi.org/10.3390/fi12090144
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the β-divergence. Neural computation, 23(9), 2421-2456. https://doi.org/10.1162/NECO_a_00168
- Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.
- Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent dirichlet allocation(LDA) and topic modeling: Models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211. https://doi.org/10.1007/s11042-018-6894-4
- Ju. Y. H., Yang, W. R., & Yang, H. C. (2023). Online shopping research trend analysis using unsupervised learning. Proceedings of the 10th International Forum on Business Convergence(ICFBC2023) of KODISA (pp.141-144). Yangyang, Korea: KODISA.
- Jung, M. S., & Shong, H. J. (2020). Effect of online shopping growth on local retail industry: Focusing on Busan region. Bank of Korea Regional Economic Report, Bank of Korea Busan Headquarters. p.113-127.
- Kim, S. W., & Yang, K. D. (2022). Topic model augmentation and extension method using LDA and BERTopic. Korean Society for Information Management, 39(3), 99-132.
- Kim, T. K., Park, D. J., Choi, I, H., Lee, E. W., & Jang, T. Y. (2018). Ripple effects and implications of online transaction expansion. BOK Issue Note, 2018(10), Bank of Korea. https://www.bok.or.kr/portal/bbs/P0002353/view.do?nttId=10048752&menuNo=200433
- Ko, Y. S., Lee, S. B., Cha, M. J., Kim, S. D., Lee, J. H., Ham, J. Y., & Song, M. (2022). Topic modeling insomnia social media corpus using BERTopic and building automatic deep learning classification model. Korean Society for Information Management, 39(2), 111-129.
- Korcham (2022). Distribution logistics statistics for 2021. Seoul: Korea Chamber of Commerce and Industry Distribution and Logistics Agency.
- Kostat(2022). June 2022 Online Shopping Trends. (http://kostat.go.kr/wnsearch/search.jsp)
- Lee, K. B. (2019). A study about the effects of online commerce on the local retail commercial area. Economic Analysis, 25(2), 54-95. https://doi.org/10.23299/BOKERI.2019.25.2.002
- Mende, M., & Noble, S. M. (2019). Retail apocalypse or golden opportunity for retail frontline management? Journal of Retailing 95(2), 84-89. https://doi.org/10.1016/j.jretai.2019.06.002
- MOTIE (2022). Ministry of Trade, Industry and Energy. Annual '21, December '21 sales trends of major distribution companies. Press release dated January 27, 2022
- Park, C. W. (2015). Practical distribution theory. Seoul: Cheongnam Book Publishing House.
- Yang, H. C. (2022). Analysis of distribution industry research trends using BERTopic and LDA. Journal of Creativity and Innovation (JCI), 15(4), 71-103.
- Yang, W. R., & Yang, H. C. (2022). Topic modeling analysis of social media marketing using BERTopic and LDA. Journal of Industrial Distribution & Business, 13(9), 39-52.