• Title/Summary/Keyword: Directional Relations

Search Result 50, Processing Time 0.021 seconds

Representation Method of Viewpoint-based Directional Relationship for 3-Dimensional Graphic Databases (3차원 그래픽 데이타베이스를 위한 시점기반의 방향관계 표현 기법)

  • 황종하;백중환;황수찬
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • Spatial relations among objects we one of the most frequently used searching criteria for a query based on the contents of 3-D images. However, the existing researches have mainly focused only the absolute directional relations based on a fixed viewpoint in 2-D images. So, this paper presents a representation method of viewpoint based directional relations that enables spatial relations among objects to be retrieved based on a viewpoint of an observer. The retrieval technique based on our method is a]so described. In this paper, the notion of 3D string is defined to express the spatial relations in a 3-D space. A retrieval method based on relative directional relations among objects from a viewpoint of an observer is also presented. The proposed method simplifies the retrieval of viewpoint-based directional relations because 2D+1D scheme reduces the dimension.

DIRECTIONAL ASSOCIATED CURVES OF A NULL CURVE IN MINKOWSKI 3-SPACE

  • Qian, Jinhua;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.183-200
    • /
    • 2015
  • In this paper, we define the directional associated curve and the self-associated curve of a null curve in Minkowski 3-space. We study the properties and relations between the null curve, its directional associated curve and its self-associated curve. At the same time, by solving certain differential equations, we get the explicit representations of some null curves.

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

Design and Implementation of a Large-Scale Spatial Reasoner Using MapReduce Framework (맵리듀스 프레임워크를 이용한 대용량 공간 추론기의 설계 및 구현)

  • Nam, Sang Ha;Kim, In Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.397-406
    • /
    • 2014
  • In order to answer the questions successfully on behalf of the human in DeepQA environments such as Jeopardy! of the American quiz show, the computer is required to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a scalable spatial reasoning algorithm for deriving efficiently new directional and topological relations using the MapReduce framework, one of well-known parallel distributed computing environments. The proposed reasoning algorithm assumes as input a large-scale spatial knowledge base including CSD-9 directional relations and RCC-8 topological relations. To infer new directional and topological relations from the given spatial knowledge base, it performs the cross-consistency checks as well as the path-consistency checks on the knowledge base. To maximize the parallelism of reasoning computations according to the principle of the MapReduce framework, we design the algorithm to partition effectively the large knowledge base into smaller ones and distribute them over multiple computing nodes at the map phase. And then, at the reduce phase, the algorithm infers the new knowledge from distributed spatial knowledge bases. Through experiments performed on the sample knowledge base with the MapReduce-based implementation of our algorithm, we proved the high performance of our large-scale spatial reasoner.

Bi-directional fault analysis of evaporator inspection system

  • Kang, Dae-Ki;Kang, Jeong-Jin
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.57-60
    • /
    • 2012
  • In this paper, we have performed a safety analysis on an automotive evaporator inspection system. We performed the bi-directional analysis on the manufacturing line. Software Fault Tree Analysis (SFTA) as backward analysis and Software Failure Modes, Effects, & Criticality Analysis (SFMECA) as forward analysis are performed alternately to detect potential cause-to-effect relations. The analysis results indicate the possibility of searching and summarizing fault patterns for future reusability.

In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions (전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명)

  • Ha, Young-Ho;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.

Characteristics of Directional Orientation in Houses and Site Design of Chilsan Village in Riverside Location, Buyeo County (강변에 입지한 부여칠산마을의 배치와 주택의 방위적 특성)

  • Lee, Hyun-Byung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.15 no.4
    • /
    • pp.69-78
    • /
    • 2013
  • The location of villages differs by position, and the method to form the conditions of location varies greatly. This study has comprehensively investigated village layout in the riverside and directional relations in houses. With changes in riverside landscape and transition to an agriculture-oriented village, there have been changes in road and the size, shape and direction of houses as well. In terms of the direction of houses situated along the river, a house facing the river accounts for more than half of all houses in the village. As traditional houses are transformed into modern houses over time, houses have become bigger, and the number of the houses facing south or southeast has been on the rise. As described above, riverside landscape and preference for the house facing south have an effect on determination of the facing direction of houses. However, the direction of geographical features of the village was first followed, and other conditions have been reflected, and the characteristics for the facing direction of houses have been observed.

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests (양방향 재하시험 결과를 이용한 암반소켓 현장타설말뚝의 주면 마찰력과 선단 지지력)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.17-36
    • /
    • 2013
  • In this paper, the empirical relations of skin friction and end bearing resistance with the results of site investigation in soft rock are proposed through the analysis of bi-directional pile load tests of rock socketed drilled shafts performed at large offshore bridge foundations and high-rise building projects (13 test piles in 4 projects). The site investigation and drilling for bi-directional pile load tests were performed at the centers of test piles, and f-w curves for skin friction and q-w curves for end bearing were plotted based on load-transfer measurements. From the above curves, the empirical relations of skin friction and end bearing resistance with the results of site investigation depending on the mobilized displacement are determined by multiple regression analysis and compared with previous studies. Since the f-w and q-w curves of rock-socketed piles in Korea show hardening behavior according to mobilized displacement, the developed empirical relations by the mobilized displacement are more reasonable than those of previous studies which could not consider the mobilized displacement and suggested the ultimate capacity with unconfined compressive strength only. Particularly, the developed equations correlated with unconfined compressive strength show the best correlations among the equations correlated with other parameters.