• Title/Summary/Keyword: Directional Dipole Antenna

Search Result 40, Processing Time 0.022 seconds

Study on a Folded Diple Antenna parallel to Conductive Pole (도전성지주에 평행한 포울디드.다이폴안테나에 관하여)

  • 박정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.5 no.4
    • /
    • pp.9-19
    • /
    • 1968
  • In this paper, I introduced the theoretical formulas for calcuating the input impedance of a folded dipole antenna which is held in parallel with the conductive supporter. Through the comparision of the above impedance formulas with the imput impedance formulas of a half wave dipole antenna which is parallel to the conductive supporter, it was found that the former can be made in identically same form as the latter, if some conditions are satisfied. The equivalent conditions mentioned above are derived also and the manufacturing of a vertically polarized omni-drectional antenna is apossible by the use of above equivalent conditions, because a half wave dipole antenna in parallel with a conductive supporter is already illustrated to become an omni-directional vertical polarization antenna. Some experimental data are shown together.

  • PDF

Estimation of Shape of Voids behind Concrete Tunnel Linings using Microwave Polarization Radar (다중 편파모드 방식 레이더에 의한 콘크리트 터널 라이닝 배면공동의 형상추정)

  • Park, Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.408-411
    • /
    • 2004
  • The presence of voids behind tunnel linings results in their deterioration. One proposed method of effectively detecting such voids by non-destructive means is radar. This research is devoted to quantitatively evaluating the efficiency of such non-destructive tests with radar. As a foundation to this ongoing research, which aims to acquire directional information and estimate the shape of specific voids using radar of three-dipole antenna type, an investigation of microwave polarization methods is carried out with various void orientations and void geometries. As the results, it is clarified that the response of microwave polarization modes depends on void geometry and thus there is a possibility of identifying the geometry and orientation of specific voids using radar of three-dipole antenna type.

  • PDF

Integrated-Optic Electric-Field Sensor Utilizing a Ti:LiNbO3 Y-fed Balanced-Bridge Mach-Zehnder Interferometric Modulator With a Segmented Dipole Antenna

  • Jung, Hongsik
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.739-745
    • /
    • 2014
  • We have demonstrated a $Ti:LiNbO_3$ electro-optic electric-field sensor utilizing a $1{\times}2$ Y-fed balanced-bridge Mach-Zehnder interferometric (YBB-MZI) modulator, which uses a 3-dB directional coupler at the output and has two complementary output waveguides. A dc switching voltage of ~25 V and an extinction ratio of ~12.5 dB are observed at a wavelength of $1.3{\mu}m$. For a 20 dBm rf input power, the minimum detectable electric fields are ~8.21, 7.24, and ~13.3 V/m, corresponding to dynamic ranges of ~10, ~12, and ~7 dB at frequencies of 10, 30, and 50 MHz respectively. The sensors exhibit almost linear response for an applied electric-field intensity from 0.29 V/m to 29.8 V/m.

Design and Analysis of Ultra-WideBand(UWB) Microstrip patch Dipole Antenna (초광대역(UWB) 마이크로스트립 패치 다이폴 안테나 설계 및 분석)

  • Chang Soo-Keun;Ko Kwang Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.193-196
    • /
    • 2004
  • This paper have a whole azimuth Omni-directional radiation pattern and will become the good radiation efficiency for applies in the steeve antenna and form which is the appearance. We contain by whole course of actual implement model to antenna design. And we will confirm the efficiency the analysis of the antenna to design and through a simulated experiment according to the implementation Ideal characteristic of the antenna to be used between 3.1 and 10.6 GHz of UWB.

  • PDF

Design and Implementation of Dual Wideband Dipole Type Antenna for the Reception of S-DMB and 2.4/5 GHz WLAN Signals (S-DMB와 2.4/5 GHz WLAN 신호 수신을 위한 이중 광대역 다이폴형 안테나의 설계 및 구현)

  • Kim, Sung-Min;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1021-1029
    • /
    • 2006
  • In this paper, we designed and implemented a dual wideband dipole type antenna for the reception of S-DMB (Satellite Digital Multimedia Broadcasting) and 2.4/5 GHz WLAN(Wireless Local Area Network) signals. The proposed antenna based on conventional monopole type dual band antenna was implemented as planar wideband dipole type antenna with the volume of $8{\times}33.8{\times}1.68mm^3$. The proposed antenna is printed type on FR4 substrate of 1.6 mm thick and composed of a dipole type antenna for low frequency band and two symmetric structured resonance elements for high frequency band. We confirmed antenna area with dense surface current for each frequency band with simulation. By varying the length of the antenna area with dense surface current, we could vary resonance frequency of each frequency band separately. Impedance bandwidths$(VSWR{\leq}2)$ are 362 MHz(14.23 %) for 2 GHz band and 1188 MHz(22.13, %) for 5 GHz band which show wideband characteristic. Measured maximum gains were 4.33 dBi for 2 GHz band and 5.48 dBi for 5 GHz band which showed improved performance. And the implemented antenna has a good omni-directional radiation pattern characteristic.

Four-Elements L-Shaped Slot Array Monopole Antenna with Dipole-like Radiation Pattern (다이폴형 방사 패턴을 갖는 4소자 L-슬롯 배열 모노폴 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • In this paper, an antenna which has dipole-like radiation pattern and low profile is proposed. The antenna is composed of four elements slot array based on L-shaped 0.43 $\lambda_g$ slot element. It presents a omni-directional radiation patter in the azimuth plane and has a null toward broad-side direction. In the design, a small mono-pole antenna which acts as a large capacitance element, combined with the partially removed ground plane by four L-shaped slots. As a result, these structure act as a LC resonator for radiation. The measured result shows, the impedance bandwidth(VSWR$\leq$2) of the proposed antenna is 60 MHz(2.35$\sim$2.41 GHz). The measured maximum radiation gain and efficiency of proposed antenna is 0.02 dBi, 56.7 % at center frequency 2.38 GHz, respectively. The proposed antenna can be applied to wireless tan access point system.

Dualband Internal Antenna for GPS/PCS Handset (GPS/PCS 단말기용 듀얼밴드 내장형 안테나)

  • 정병운;이학용;이종철;김종헌;김남영;이병제;박면주
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.550-557
    • /
    • 2003
  • In this paper, two dualband internal antennas for GPS/PCS handset are proposed. At first, the monopole antenna with parasitic dipole element is designed to print PCB of handset directly. At second, the antenna with bended loop structure is designed to bend to use internal space of handset maximumly. The proposed dualband internal antennas provide a 2:1 VSWR bandwidth of over 19.1 % which are possible to cover two bands at once. the antennas have a gain between -0.4 and 3.33 ㏈i at all bands and they have almost omni-directional patterns.

Study on Data-link Antenna System for UAV (무인기용 탑재 데이터링크 안테나 시스템에 관한 연구)

  • Yeo, Su-Cheol;Kang, Byoung-Wook;Bae, Ki-Hyeong;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • In this paper, we studied on-board antenna(primary link/secondary link/satellite link) used in UAV Data-link system. As a result, it is ideal to configure the Data-link as a triple link to secure the flight stability of the UAV, but the communication link should be configured according to the operating platform. As a result of overseas R&D trend analysis, the on-board Data-link antenna is installed and operated in a location where it is easy to secure LOS. The primary link consists of a directional antenna for basic operation and an omni-directional antenna for emergency operation. The secondary link uses a monopole/dipole antenna in the UHF/C band. Satellite link has been developed to apply phased array antenna to improve UAV operability.

Omni - directional Dipole - antenna for RFID Tag (전방향성 특성을 갖는 RFID Tag 용 다이폴 안테나)

  • Yun Jihun;Son Taeho;Han Dave K.
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.140-142
    • /
    • 2005
  • 본 논문에서는 900MHz대역에서 전방향성 특성을 갖는 RFID tag용 다이폴 안테나를 설계하였다. 전방향성 특성을 얻기 위해 두 개의 다이폴 안테나를 대각으로 위치하고 $90^{\circ}$의 위상차를 주어 급전하였다. 시뮬레이션 툴을 이용한 결과 안테나의 이득은 1.78dB이었으며, E-plane 과 H-plane 모두 전방향성 특성을 보였다.

  • PDF

An Omnidirectional High Gain Antenna for UHF Band Ground Station (UHF대역 지상국용 무지향 고이득 안테나)

  • Bae, Ki-Hyoung;Chang, Min-Soo;Joo, Jae-Woo;Hwang, Chan-Ho;Hong, Ki-Pyo
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.12 no.4
    • /
    • pp.539-550
    • /
    • 2017
  • In this paper, we designed, fabricated and tested an UHF band cylindrical dipole array antenna. In the proposed antenna, cylindrical dipoles were vertically arranged in four stages. A parallel structure feeding circuit was installed inside the cylindrical dipole and mounted so as to be broadband matching. The feeding circuit was installed at the center of the cylindrical dipole to optimize the gain flatness characteristic of the azimuth direction omnidirectional radiation pattern. Minimizing the difference between the signals branched from the feeding circuit and realizing the symmetry of the radiation pattern. The required specifications are more than 11.2% bandwidth in UHF band, above 6dBi antenna gain, standing wave ratio of 2:1 or less, less than ${\pm}1dB$ gain flatness in azimuth radiation pattern, more than 13 degrees in elevation radiation pattern of 3dB beamwidth. We confirmed the possibility of implementation through M&S and verified the result of M&S through production and testing. The test results are 11.2% bandwidth in the UHF band, 6.30 to 8.31 dBi gain, 1.53:1 standing wave ratio or less, within ${\pm}0.2dB$ gain flatness in the azimuth radiation pattern, elevation radiation pattern of 3dB beam width was 15.62 to 15.84 degrees. The test result meets all requirements specifications.