• Title/Summary/Keyword: Direction of eye movement

Search Result 61, Processing Time 0.027 seconds

Comparison of Vertical and Horizontal Eye Movement Times in the Selection of Visual Targets by an Eye Input Device

  • Hong, Seung Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • Objective: The aim of this study is to investigate how well eye movement times in visual target selection tasks by an eye input device follows the typical Fitts' Law and to compare vertical and horizontal eye movement times. Background: Typically manual pointing provides excellent fit to the Fitts' Law model. However, when an eye input device is used for the visual target selection tasks, there were some debates on whether the eye movement times in can be described by the Fitts' Law. More empirical studies should be added to resolve these debates. This study is an empirical study for resolving this debate. On the other hand, many researchers reported the direction of movement in typical manual pointing has some effects on the movement times. The other question in this study is whether the direction of eye movement also affects the eye movement times. Method: A cursor movement times in visual target selection tasks by both input devices were collected. The layout of visual targets was set up by two types. Cursor starting position for vertical movement times were in the top of the monitor and visual targets were located in the bottom, while cursor starting positions for horizontal movement times were in the right of the monitor and visual targets were located in the left. Results: Although eye movement time was described by the Fitts' Law, the error rate was high and correlation was relatively low ($R^2=0.80$ for horizontal movements and $R^2=0.66$ for vertical movements), compared to those of manual movement. According to the movement direction, manual movement times were not significantly different, but eye movement times were significantly different. Conclusion: Eye movement times in the selection of visual targets by an eye-gaze input device could be described and predicted by the Fitts' Law. Eye movement times were significantly different according to the direction of eye movement. Application: The results of this study might help to understand eye movement times in visual target selection tasks by the eye input devices.

Cervico-ocular Reflex in Bilateral Labyrinthectomized Cats (양측 전정절제(前庭切除) 가묘(家猫)의 경안구반사(頸眼球反射))

  • Park, Byung-Rim;Park, Chul-Soon
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.79-88
    • /
    • 1988
  • The effect of cervical proprioceptors on the control of eye movement and body posture was examined in unanesthetized labyrinthine intact and bilateral labyrinthectomized cats. Cervico-ocular reflex(COR) was elicited by stimulation of the cervical proprioceptors by means of sinusoidal rotation of head or body in the darkness. The following results were obtained: 1) In labyrinthine intact cats, sinusoidal rotation of the whole body elicited compensatory eye movement(vestibulo-ocular reflex: VOR); the direction of eye movement was opposite to the direction of head rotation. 2) Anticompensatory eye movement was observed by sinusoidal rotation of the body with head fixed in labyrinthine intact cats; the direction of eye movement was the same as the direction of head rotation. 3) Compensatory eye movement was observed by sinusoidal rotation of the head with body fixed or sinusoidal rotation of the body with head fixed in both acute and chronic bilateral labyrinthectomized cats. These results suggest that the cervical proprioceptors are important in the control of ocular movement and posture in the bilateral labyrintectomized cats, although they are questionable in labyrinthine intact cats.

  • PDF

Effects of Environmental Factors on the Eye Direction in Juvenile Starry Flounder Platichthys stellatus (강도다리(Platichthys stellatus) 변태 과정에서 안구 이동의 방향에 관여하는 환경적 요인)

  • Tae Min Kim;Hyun Seok Jang;Jung Yeol Park;Hyo bin Lee;Han Kyu Lim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.4
    • /
    • pp.448-458
    • /
    • 2024
  • The direction of eye movement in Pleuronectiformes is species-specific. In farmed flounder, deviations in eye direction can reduce marketability. Therefore, we explored the effects of genetic and environmental factors on the direction of eye movements in the starry flounder Platichthys stellatus to address this economic challenge. Four pairs of female and male starry flounder broodstock, with eyes positioned to the right or left, were used in a mating experiment. The experimental groups were established with breeding seawater temperatures set at 10, 14, and 18℃ for the water temperature experiment. Whole-body samples of juveniles were collected to analyze the expression of genes related to eye movement and direction. The mating experiment results showed no significant differences in abnormal eye movement. In the water temperature experiment, the rate of abnormal eye movement was significantly higher at 32.19±1.33% in the 18℃ group than in the 10 and 14℃ groups. Genetic analysis of eye movement related to water temperature revealed that the expression of eye migration genes was significantly higher at 10℃. Moreover, no significant differences were observed in mating experiments. In conclusion, water temperature and not mating affected the eye movement of starry flounder.

A Study on Eye-Tracking by Speed & Direction Changes of Graphic Images (그래픽 이미지의 움직임 속도와 방향 변화에 따른 시선 이동 추적 연구)

  • Kim, Sehwa;Seong, Cheekyong
    • Journal of Communication Design
    • /
    • v.38
    • /
    • pp.80-90
    • /
    • 2012
  • The purpose of this study is to determine the differences in eye-tracking, which is one of the emotional reactions of the autonomic nervous system, against various experimental stimuli that vary in terms of the movement attributes of graphic image. This experiment conducted an analysis of variance of the movement factors(n) in each movement attribute(speed, horizontality movement, verticality movement, diagonal movement). Dependent variables were the fixation starting time, the fixation dwell time, the whole fixation time from stimulus appearance, and the eye-tracking length. The result of eye-tracking against movement speed showed nonsignificant differences for each movement attribute. In the horizontality movement, the → movement was higher than the ← movement. In the verticality movement, the ↑ movement was higher than the ↓ movement. In the diagonal movement, there was not significant differences for each movement attributes.

The Change of Accommodative Function by the Direction of Eye Movements During Computer Game (컴퓨터 게임 시 안구운동의 방향에 따른 조절기능의 변화)

  • Kwon, Ki-Il;Woo, Ji Yeon;Park, Mijung;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • Purpose: In this study, the effect of the eye movement direction on visual function related to accommodation was investigated when playing computer games for a certain period of time. Methods: Total 60 subjects in 20s who had the visual acuity of 1.0 or higher without any ocular disease and accommodative dysfunction were asked to play computer games separately in horizontal and vertical directions for 40 and 90 minutes and then measured their accommodative amplitude, accommodative facility, accommodative lag and relative accommodations. Thevisual function when not doing the computer game was regarded as a control value, and further compared and analyzed. Results: The accommodative amplitude, accommodative facility, accommodative lag and relative accommodations showed the tendency of decrease after the computer game for 40 minutes, and more reduced values of the visual functions were shown when the computer game extended up to 90 minutes except positive relative accommodation. Positive relative accommodation had a tendency to increase slightly after the computer game for 90 minutes. Meanwhile, the change of the visual functions was primarily influenced by the eye movement in horizontal direction rather than by the eye movement in vertical direction during computer game when analyzed by the direction of eye movement. Conclusions: Over all accommodative functions tended to decrease with the extended VDT working time by computer game, and the frequent eye movement in horizontal direction during VDT tasks could be the main cause of eyestrain since the eye movement in horizontal direction rather than vertical direction significantly affected the change of accommodative function.

The Change of Near Point of Convergence and Fusional Reserves after Computer Gaming with Different Direction of Eye Movement (안구의 운동방향이 다른 컴퓨터 게임 후 폭주근점과 융합여력의 변화)

  • Kim, Se Il;Kwon, Ki-Il;Lee, Jiye;Lee, Hyo Jin;Park, Mijung;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Purpose: The present study was conducted to investigate whether the directions of eye movement in playing computer games for certain period affected the change of near point of convergence (NPC) and fusional reserve (FR) or not. Methods: Total 40 subjects in 20s who have the visual acuity of 1.0 or higher without any ocular disease and accommodative dysfunction were asked to successively play computer games. After the subjects were moving eyes in horizontal and vertical directions for 40 and 90 minutes, their horizontal fusional reserves, vertical fusional vergence and near point of convergence were measured. Results: The near point of convergence showed a tendency to be receded after computer gaming in the horizontal and vertical directions, and both of horizontal and vertical fusional reserves were significantly reduced. The range of declined fusional reserves and receded near point of convergence after computer gaming for 90 minutes was smaller than those after computer gaming for 40 minutes. The change of binocular vision was affected by the horizontal eye movement rather than the vertical movement when analyzed by the direction of eye movement. Conclusions: This study revealed that the change in FR and NPC was different along with dominant direction of eye movement during visual display terminal (VDT) tasks. Therefore, the adjustment of VDT working time is required to prevent the dysfunction of binocular vision according to the dominant direction of eye movement during VDT task.

Characteristics of Corrective Saccadic Eye Movement with E.O.G. (E.O.G.를 이용한 Corrective Saccadic 안구운동 특성)

  • 김윤수;박상희
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1981
  • In this study, measuring eye movements with E.O.G. to targets beyond 20$^{\circ}$ from fixation point, results are as follows. (1) When the eyes turn toward targets of more than 20$^{\circ}$ eccentricity, the first saccadic eye movement falls short of the target. The presence of image of the target off the fovea(visual error signal) subsequent to such an undershoot elicits, after short interval, corrective saccadic eye movements(usually one) which place the image of the target on the fovea. (2) There are different programming modes at retina for eye movement to targets within and beyond 20$^{\circ}$ from the fixation point. (3) Saccadic system, preparing the direction and amplitude of eye movement completes the corrective saccadic eye movements. (4) Distribution of latency and intersaccadic interval(I.S.I.)are frequently multi modal, with a seperation between modes of 25[msec]. (5) There are two types of saccadic eye movements for the double-step targets. This fact suggests that the visual information is sampled stochastically. (6) The new model of saccadic system including the dissociation of visual functions dependent on retinal eccentricity is required.

  • PDF

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

Study on the Characteristic of Eye Movement for Visual Improvement of the Elderly

  • Yu, Mi;Piao, Yong-Jun;Kim, Yong-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.202-205
    • /
    • 2005
  • The purpose of this work is to identify the characteristic of eye movement for visual training of the elderly. This investigation is to examine the relationship between the head and the eye motor system for the localization of visual target direction in three-dimensional space. All experiments were performed in a soundproof chamber. Twenty-one red LEDs (Light-Emitting Diode, Brightness: 20cd/$m^2$) arrayed in three lines on a half circle-surrounding panel are used. LEDs are horizontally 30 degree apart and vertically 20 degree apart from each other. The condition of stimulation is random and anti-saccade. Physiological parameter such as EOG (Electro-Oculography) was measured by BIOPAC system. We measure the mean latency time, which is the time from the start of visual stimulation to the response of the human body. The result shows that the mean latency time is short in the case of the condition of anti-saccade, the fixed head and a quarter visual stimulation. This finding can be used in developing programs for various visual improvements for the elderly by analyzing the characteristic of eye movement.

  • PDF

Optical Performance Analysis of the Eye which it Follows in Iris Eccentricity (홍채 편심에 따른 눈의 광학적 성능 분석)

  • Kim, Bong-Hwan;Han, Sun-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.2
    • /
    • pp.31-34
    • /
    • 2009
  • Purpose: We are to analyze optically how to affect the eye related with movement of the iris. Methods: Using the schematic eye to have the crystalline lens of the radial GRIN and the spherical GRIN forms that come to be planned in existing, the iris centre was moved 0.5 mm with nasal direction in order to be identical with the real eye. Also, considering that the iris centre move according to increase of the pupil size, the iris centre was moved 0.4 mm with temporal direction to analyze the optical performance change of the eye respectively. Results: Because of decrease in the spherical aberration, the schematic eye with nasal direction 0.5 mm eccentricity of the iris showed a different consequence plentifully compared with the performance of the real eye. Besides, the schematic eye with temporal direction 0.4 mm eccentricity of the iris showed that the spherical aberration somewhat increased. Conclusions: In case of design of the schematic eye with the similar real eye performance which the iris centre was moved 0.5 mm with nasal direction, we need to research about aspheric coefficient of optical constants of each refracting surface considering the performance change of a spherical aberration, a peripheral power error and astigmatism etc, owing to change of the real eye hence to be affected by the iris movement.

  • PDF