• Title/Summary/Keyword: Direct-shear test

Search Result 425, Processing Time 0.03 seconds

Reinforcement Effect Comparison of Reinforced Clayey Soil with Various Geotextile (각종 지오텍스타일 보강재에 의한 보강점성토의 보강효과 비교)

  • 송성원;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.121-128
    • /
    • 1999
  • Recently, research of reinforcement mechanism in a sense of soil mechanics has been under way by many researchers with developing various kinds of geoteutiles. But it must be consider that reinforcement effect largely depends on used geotextile even if it is used on same in-site condition. As a matter of fact it is not necessarily that reinforcement effect appears in all the case of reinforced soil construction. It means that appropriate geotextile coincided with the intention has to be selected and adequate examination is needed. In this study, reinforcement effect with various kinds of geotextiles are compared through a series of direct shear tests. Based on the test results, shear strength characteristics and reinforced effects are investigated quantitatively and qualitatively considering the confining stress, reinforcement characteristics and number of reinforcement.

  • PDF

A study on the Measurement of Interface Friction between Soils and Fibers (흙과 섬유의 상호마찰 특성의 측정에 관한 연구)

  • 장병욱;서동욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.467-472
    • /
    • 1998
  • The interface friction angle between soil and fibers is important to evaluate improvement of the shear strength on fiber mixed soils. Direct shear test and pullout tort conducted by an apparatus made specially for the purpose of this study, was analyzed to know how fiber and soils affect on interface friction angle. By the results, The value of interface friction angle of sandy soils is larger than that of clayey soils. As a diameter of fiber is large, the value of friction coefficient of sandy soil is increase and that of clayey soil is decrease. An interface friction angle of well graded soil is larger value than that of uniform graded soil

  • PDF

A Study of Bending Stress for the 3-D Chip Curl (3-D 칩 만곡의 굽힘응력에 관한 연구)

  • 윤주식;김우순;김경우;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.730-734
    • /
    • 2000
  • Once the Chip has developed a mixed mode of side-curl and up-curl, it would generally curl to strike the too] flank. The development of the bending stresses and shear in the chip would ultimately lead to chip failure. This paper attacks this problem from a mechanics-based approach. by treating the chip as a 3-D elastic curved beam, and applying appropriate constraints and forces. The expressions for bending. shear and direct stresses are developed through an energy-based criterion. The location of the maximum stresses is also identified and explained for simulated test conditions.

  • PDF

SHEAR BOND STRENGTH OF REPAIRED COMPOSITE RESIN RESTORATIONS (수리된 복합레진 수복물의 전단결합강도 연구)

  • Choi, Soo-young;Jeong, Sun-Wa;Hwang, Yun-Chan;Kim, Sun-Ho;Yun, Chang;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.569-576
    • /
    • 2002
  • This study was peformed to evaluate the interfacial shear bond strength of base (direct and indirect) and repair composites with aging and surface treatment methods. Direct composite resin specimens ($Charisma^{\circledR}$, Heraeus Kulzer, Germany) were aged for 5 min, 1 hour, 24 hours, and 1 week in $37^{\circ}C$ distilled water before surface treatment, and then divided into five groups Group 1, grinding; Group 2, grinding and application of bonding agent, Group 3, grinding, etching with 37% phosphoric acid for 30sec, and application of bonding agent, Group 4, grinding, etching with 37% phosphoric acid for 30sec, silane treatment, and application of bonding agent ; Group 5, grinding, etching with 4% hydrofluoric acid for 30sec. silane treatment, and application of bonding agent. Indirect composite resin specimens ($Artglass^{\circledR}$, Heraeus Kulzer, Germany) were aged for 1 week in $37^{\circ}C$ distilled water and divided into seven groups Group 1 - Group 5, equal to Charisma specimens; Group 6, grinding, etching with 37% phosphoric acid for 60sec, silane treatment, and application of bonding agent; Group7, grinding, etching with 4% hydrofluoric acid for 60 sec, silane treatment, and application of bond-ing agent. The repair material($Charisma^{\circledR}$) was then added on the center of the surface (5 mm in diameter. 5 mm in height). The shear bond strength was tested and the data was analyzed using one-way ANOVA and the Student- Newman-Keuls test. The following conclusions were drawn. 1 The shear bond strength of $Charisma^{\circledR}$ specimens aged for 1 hour was significantly higher in Group 2 and Group 5 than in Group 1 (p<0.05), and that of $Charisma^{\circledR}$ specimens aged for 1 week was signifi-cantly higher in Group 3 and Group 5 than in Group 1 (p<0.05). No significant difference was found in the bond strength of specimens aged for 5 min and 24 hours. 2. In Group 2 of the $Charisma^{\circledR}$ specimens, there was significant difference between the bond strength of 24 hours and that of 1 week (p<0.05). 3. In Group 4 of the $Charisma^{\circledR}$ specimens, the shear bond strength of specimens aged for 24 hours was significantly higher than the others(p<0.05) 4. There was no significant difference between the shear bond strength of the $Artglass^{\circledR}$ specimens, 5. Most of the $Charisma^{\circledR}$ specimens showed cohesive fractures. Artglass^{\circledR}$ specimens that were etched with acid (phosphoric or hydrofluoric) for 30 sec showed more cohesive fractures.

A Study of shear bond strength of bonded retainer according to the bonding method and type of wires (접착방법 및 multistranded wire의 종류에 따른 접착식 보정장치의 전단접착강도에 관한 연구)

  • Lee, Hyoung-Cheol;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.143-153
    • /
    • 2002
  • The bonded orthodontic retainer constructed from composite and multistrand orthodontic wire provides an esthetic and efficient system for maintained retention. This study was designed to measure shear bond strength of bonded retainers and to suggest a optimal combination of a multistrand wire and bonding method used when bonded retainer was fabricated. 160 sound maxillary and mandibular premolars were used for 80 test samples. After Uniformizing bonding area, length of wire, and thickness of composite, multistrand wire was bonded to fabricated a bonded retainer by direct or indirect bonding method. Shear bond strength and extension length of each sample were measured by a universal testing machine. The results of this study were as follows : 1. In vitro shear bond testing found 6-stranded, 0.0155 inch wires to have the largest shear bond strength and 3-stranded, 0.0195 inch wires to have the least shear bond strength. But, These difference was not statistically significant(p<0.05). 2. In vitro extension testing found 3-stranded, 0.0155 inch wires to have the largest extension length and 3-stranded, 0.0195 inch wires to have the least extension length(p<0.05). The larger diameter wire was used, the larger extension length was shown. But, the strand of wire is not related to the extension length of wire. 3. In comparison with direct bonding method, larger shear bond strength and extension length was shown in indirect bonding method(p<0.05).

Shear Behavior of Rough Granite Joints Under CNS Conditions (일정 수직강성 조건하 화강암 인장절리의 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.203-215
    • /
    • 2007
  • Stability and mechanical deformation behavior of rock masses are highly dependent on the mechanical characteristics of contained discontinuities. Therefore, mechanical characteristics of the discontinuities should be considered in the design of tunnel and underground structures. In this study, direct shear tests for rough granite joints were carried out under constant normal stiffness conditions. Effects of initial normal stress, shear velocity, and surface roughness on the characteristics of shear strength and deformation behaviors were examined. Results of shear testing under constant normal stiffness conditions reveal that shear behaviors could be classified into two categories, based on the amount of decrease in shear stress at the Int peak shear stress. With initial normal stiffness increasing, it turned out that shear displacement at peak stress and the first peak shear stress increased, however friction angle and friction coefficient showed decrease. In case of shear stiffness and average friction coefficient, it turned out that they are not dependent on the initial normal stress. Minor effects of shear velocity on rough joints were observed in several shear quantities. However, the effects of shear velocity were insignificant regardless of the normal stress increase. Change of shear strength and deformation characteristics on joint roughness were examined, however, it turned out that the variations were attributed to deviation of shear test specimens.

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • 장수호;이석원;배규진;최순욱;박해균;김재권
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.79-86
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been considered in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compressive strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on the experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties could be well regressed through exponential and logarithmic functions of time.

An Experimental Study on the Bonding Characteristic of Steel Tubular Joint Connection filled with Fiber Reinforced High Performance Cementeous Grout (섬유보강 고성능시멘트계 그라우트가 적용된 강관 연결부의 부착특성에 대한 실험적 연구)

  • Oh, Hong-Seob;Seo, Gyo;Kim, Sang-Hyeon;Ko, Sang-Jin;Lee, Hyeon-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.21-29
    • /
    • 2014
  • This paper deals with the bonding characteristic of grouted joint connections of monopile support structures for offshore wind power facilities. For the integration of pile connection of wind power supporting structure, fiber reinforced high performance cementeous grout was developed and the ultimate compressive strength of it is 125MPa and the direct tensile strength is 7.5 MPa at 7 days. To assess the bond strength of grout filled in pile connection, small scaled direct bond tests under axially loaded was performed and analyzed according the existing guidelines. The fiber volume fraction (0%, 0.5% and 0.9%), aspect ratio of fiber (60 and 80) and the ratio of height to spacing of shear key (0.013 and 0.056) were adopted as the experimental variables. From the test results, the maximum bond strength among the all specimens was 30.8MPa and the bond strength of grouted connection was affected by the ratio of height to spacing of shear key than the fiber volume fraction.

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.