• Title/Summary/Keyword: Direct-drive

Search Result 592, Processing Time 0.029 seconds

Experimental Evaluation of Feedforward Control Based on the Dynamic Models of A Direct Drive SCARA Robot (직접구동 평면 다관절 로봇의 동역학적 모델에 따른 피드포워드 제어의 실험적 평가)

  • Hong, Yun-Sik;Kang, Bong-Su;Kim, Su-Hyeon;Park, Gi-Hwan;Kwak, Yun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.146-153
    • /
    • 1996
  • A SCARA type direct drive robot which can be used in the assembly operation was designed and manufactured. Graphite fiber epoxy composite material was used in the fabrication of the robot arm structure in order to improve the speed of the robot arm with a high damping effect. For model-based control and sensitivity analysis of system parameters, the dynamic model of robot arm and drive servo amplifier parameters such as equivalent gains of PWM driver and velocity gains of servo system were estimated from frequency response tests. The complete dynamic model for overall robot system was used in the simulation of the open-loop control. The simulation results agreed reasonably well to the experimental results. The feedforward control using the dynamic models improved the trajectory tracking performance, decreasing the tracking error by factor of three compared with PID control. This study found that the inverse dynamic model of the robot arm including the drive servo system showed better performances than the case of arm dynamic model only.

The Development of a super high speed motor driving system for the direct drive type turbo compressor (직접 구동방식의 터보 압축기를 위한 초고속 전동기 구동 시스템 개발)

  • 권정혁;변지섭;최중경
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.219-222
    • /
    • 2002
  • There are screw, reciprocating type turbo compressor by structure in an air compressor which is essential equipment on the industrial spot. Recently, the application range of a turbo compressor tend to be wide gradually. And this type of compressor needs high speed rotation of impeller in structure so high ratio gearbox and conventional induction motor driving required. This mechanical system have results of increased moment of inertia and mechanical friction loss. Recent studies of modern turbo compressor have been applied to developing super high speed BLDC motor and driver which remove gearbox that make its size small and mechanical friction loss minimum. To accomodate this tendency, we tried to develope a super high speed motor drive system for 150Hp, 70,000rpm direct drive Turbo compressor using DSP(Digital Signal Processor) and SVPWM(Space Vector Modulation PWM) technique. The results of this specific application show that super high speed driver and controller could be implemented well with digital electronics.

  • PDF

Speed Control for Field Weakening Operation of PMSM Drive (PMSM 드라이브의 약계자 운전을 위한 속도제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Jung Tack-Gi;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.297-299
    • /
    • 2002
  • This paper is proposed maximum torque control for electric vehicle drive. At low speeds, the reluctance torque is used to maximize the output for a given current level. This Is achieved maximum torque per ampere(MTPA) by selecting an optimal value of the direct stator current component. At high speeds, the system reaches a point at which the inverter will not be able to supply the desired voltage In this case it Is necessary to make use of an increased value the direct current component. The proposed control algorithm is applied to PMSM drive system, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

  • PDF

Flying Capacitor DTC Drive with Reductions in Common Mode Voltage and Stator Overvoltage

  • Rahmati, Abdolreza;Arasteh, Mohammad;Farhangi, Shahrokh;Abrishamifar, Adib
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.512-519
    • /
    • 2011
  • This paper gives a detailed analysis of the direct torque control (DTC) strategy in a five-level drive and proposes a 24-sector switching table. The known problems in low-voltage drives such as bearings currents and an overvoltage phenomenon which leads to premature failure are reviewed and the occurrence of these problems in medium voltage drives has been investigated. Then a solutions to these problems is presented and the switching table to deal with these problems is modified. Simulation and experimental results on a 3kVA prototype confirm the proposed solution. In implementing the above strategy a TMS320F2812 is used.

A Study on Implementation of a Real Time Learning Controller for Direct Drive Manipulator (직접 구동형 매니퓰레이터를 위한 학습 제어기의 실시간 구현에 관한 연구)

  • Jeon, Jong-Wook;An, Hyun-Sik;Lim, Mee-Seub;Kim, Kwon-Ho;Kim, Kwang-Bae;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.369-372
    • /
    • 1993
  • In this thesis, we consider an iterative learning controller to control the continuous trajectory of 2 links direct drive robot manipulator and process computer simulation and real-time experiment. To improve control performance, we adapt an iterative learning control algorithm, drive a sufficient condition for convergence from which is drived extended conventional control algorithm and get better performance by extended learning control algorithm than that by conventional algorithm from simulation results. Also, experimental results show that better performance is taken by extended learning algorithm.

  • PDF

Sensorless Control Using the Back EMF of PM Generator for 2MW Variable Speed Wind Turbine (역기전력을 이용한 2MW급 가변속 풍력터빈용 영구자석 동기기의 센서리스 제어)

  • Im, Ji-Hoon;Oh, Sang-Geun;Song, Seung-Ho;Lee, Hyen-Young;Kwon, Oh-Jeong;Jang, Jeong-Ik;Lee, Kwon-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.54-60
    • /
    • 2011
  • A PMSG in variable speed wind turbine needs to know the position of rotor for vector control. Since the position sensor has the disadvantage in terms of cost, complexity of the system, a sensorless algorithm is needed. The sensorless strategy using the back EMF estimation is used for PMSG Wind Turbine. This algorithm is comparatively easy to implement than other strategies. This paper introduces the application of stable sensorless control for 2MW direct drive PMSG. In order to confirm the sensorless algorithm, the implementation is proceeded using 2MW direct drive PMSG from no-load condition to full-load condition. To drive 2MW PMSG artificially, 2MW PMSG connected PMSG through the mechanical coupling.

Effect of Water Depth on the Performance of a Direct Drive Turbine for Wave Energy Converter (파력발전용 직접구동터빈의 성능에 미치는 수심의 영향)

  • Choi, Young-Do;Kim, Chang-Goo;Cho, Young-Jin;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.38-45
    • /
    • 2008
  • Development of high efficiency turbine with good performance is one of the main topics in the field of developing wave energy converter. For the development and improvement of the turbine performance, the effect of wave condition on the turbine performance should be considered in detail. Also, water depth is an important factor because incident wave power to the turbine is considerably influenced by the wave particle amplitude of motion and the amplitude is closely related with the water depth. Therefore, in this study, the effect of water depth on the performance of a direct drive turbine(DDT) for wave energy converter is investigated using the DDT which is installed in two types of wave channel. The experimental results show that the DDT captures more wave energy under the condition of relatively shallow water depth. When the water depth is shallow, the horizontal water particle amplitude of motion becomes wider and thus, the water power toward the turbine becomes larger.

A Novel Filtering Method Based on a Nonlinear Tracking Differentiator for the Speed Measurement of Direct-drive Permanent Magnet Traction Machines

  • Wang, Gaolin;Wang, Bowen;Zhao, Nannan;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.358-367
    • /
    • 2017
  • This paper presents a novel filtering method for speed measurements to improve the low-speed performance of the direct-drive permanent magnet traction machines for elevators. Based on the theory of nonlinear tracking differentiator (NTD), this method, which can act as a high performance filter of a raw speed signal, obtains a more accurate speed feedback signal when applying a low-resolution encoder. In addition, it can relieve the interference caused by the position derivative for speed sampling. By analyzing the frequency response of the NTD, the influence of its parameters on the performance of the speed filtering is investigated. Compared with different types of low-pass filters, the proposed method shows a shorter time delay and a stronger ability in terms of noise suppression when the parameters are selected carefully. In addition, when using the measured speed signal through a nonlinear tracking differentiator as the feedback of the system, the motor runs more steadily at low speeds. As a result, the riding comfort of a direct-drive elevator can be improved. The feasibility of the proposed strategy was verified on an 11.7kW elevator traction machine using a commercial inverter.

The Development of DSP Based Multi Controller for Direct Drive Method Turbo Compressor (DSP를 이용한 직접 구동방식의 터보 압축기용 통합 제어기 개발)

  • 권정혁;변지섭;최중경;류한성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.885-890
    • /
    • 2002
  • Turbo compressor needs high speed rotation of impeller in structure, high rated gearbox and conventional induction motor. This mechanical system increased the moment of inertia and mechanical friction loss. Resently the study of turbo compressor applied super high speed motor and drive, removing gearbox made its size small and mechanical friction loss minimum. In this study we tried to develope variable super high speed motor controller, compressor controller and MMI controller under one DSP based systems for 1500Hp, 70,000rpm direct drive Turbo compressor. It have to do unitification of each controller"s hardware and software. The result of study is applied to a 150Hp direct turbo compressor and makes it goods.oods.

A Novel Seamless Direct Torque Control for Electric Drive Vehicles

  • Ghaderi, Ahmad;Umeno, Takaji;Amano, Yasushi;Masaru, Sugai
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Electric drive vehicles (EDV) have received much attention recently because of their environmental and energy benefits. In an EDV, the motor drive system directly influences the performance of the propulsion system. However, the available DC voltage is limited, which limits the maximum speed of the motors. At high speeds, the inverter voltage increases if the square wave (SW) voltage (six-step operation) is used. Although conventional direct torque control (DTC) has several advantages, it cannot work in the six-step mode required in high-speed applications. In this paper, a single-mode seamless DTC for AC motors is proposed. In this scheme, the trajectory of the reference flux changes continuously between circular and hexagonal paths. Therefore, the armature voltage changes smoothly from a high-frequency switching pattern to a square wave pattern without torque discontinuity. In addition, because multi-mode controllers are not used, implementation is more straightforward. Simulation results show the voltage pattern changes smoothly when the motor speed changes, and consequently, torque control without torque discontinuity is possible in the field weakening area even with a six-step voltage pattern.