• Title/Summary/Keyword: Direct-drive

Search Result 597, Processing Time 0.023 seconds

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

The 3D visual robot teaching mode design on the windows 95 (윈도우즈 95환경에서 3D Visual 로봇 교시 모드 구현)

  • 탁정률;이종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.407-409
    • /
    • 1996
  • The Direct Arm(DDA) is a SCARA typed direct drive manipulator with three degree of freedom(DOF) using the direct motor of the NSK company. In the paper, we propose a convenient interface for the SCARA-type robot which is practical to use. The proposed Visual Robot Teaching Mode using 3D graphics replaces the current teaching box. And besides this graphical teaching software can be implemented on the PC which is company used as a robot controller. This program was developed for the Windows 95 OS.

  • PDF

Dynamic Characteristics of HDD Slider by Perturbated Direct Numerical Method

  • Khan Polina V.;Hwang Pyung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.210-214
    • /
    • 2003
  • The static and dynamic characteristics of HDD slider with ulta-low flying height are analyzed using Direct Numerical method with Boundary Fitted Coordinate System. The slip flow effect is considered using the Boltzmann equation solution in a form of the flow rate database. The air film stiffness and damping are evaluated by the small perturbation method.

  • PDF

Performance Analysis of NVMe SSDs and Design of Direct Access Engine on Virtualized Environment (가상화 환경에서 NVMe SSD 성능 분석 및 직접 접근 엔진 개발)

  • Kim, Sewoog;Choi, Jongmoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • NVMe(Non-Volatile Memory Express) SSD(Solid State Drive) is a high-performance storage that makes use of flash memory as a storage cell, PCIe as an interface and NVMe as a protocol on the interface. It supports multiple I/O queues which makes it feasible to process parallel-I/Os on multi-core environments and to provide higher bandwidth than SATA SSDs. Hence, NVMe SSD is considered as a next generation-storage for data-center and cloud computing system. However, in the virtualization system, the performance of NVMe SSD is not fully utilized due to the bottleneck of the software I/O stack. Especially, when it uses I/O stack of the hypervisor or the host operating system like Xen and KVM, I/O performance degrades seriously due to doubled-I/O stack between host and virtual machine. In this paper, we propose a new I/O engine, called Direct-AIO (Direct-Asynchronous I/O) engine, that can access NVMe SSD directly for I/O performance improvements on QEMU emulator. We develop our proposed I/O engine and analyze I/O performance differences between the existed I/O engine and Direct-AIO engine.

Design of Fuzzy Controller of Induction Motor Drive with Considering Parameter Variation (파라미터 변동을 고려한 유도전동기 드라이브의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.111-119
    • /
    • 2002
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

A Novel Motor Drive System for Electric Vehicle (전기자동차용 전동기 구동시스템의 개발)

  • Choi, Hyung-Mook;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.151-153
    • /
    • 1993
  • This paper proposes a novel motor drive system for the electric vehicle. In this paper, four-wheel-direct-drive type electric vehicle system is designed and the theoretical and experimental analysis of the system is investigated. The concept of steering not with steering the wheels but with the difference of the motor torque fives the flexibility of the vehicle design and, allows the omission of the differential gear, transmission gear, and drive axles. Thus the proposed system gives the space between wheels and improves the driver's steering performance.

  • PDF

A Study on the Position Control of the parallelogram link DD Robot Using Neural Network (신경회로망을 이용한 평행링크 DD로봇의 위치제어)

  • 김성대
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.64-71
    • /
    • 1999
  • In this paper, two degree of freedom parallelogram link mechanism is used as DD(Direct-drive) robot mechanism. In parallelogram link mechanism, two motors being established in each base frame, the mass of motor itself is not loaded to anther motor; the number of links are increased, the mass of arm being lighter; with the estabilishment of link parameter, nonlinearity such as the centrifugal force disappears; at the same time anti-interference between motors can be realized. And to realize highy-accurate drive of parallelogram link DD robot manipulator, to improve the learning speed through the design of leaning control system using neural network, to raise adapting power to the varied work objects; the learning control algorithm is composed of neural network and feedback controller in this paper.

  • PDF

Instantaneous Torque Control of Brushless Direct Drive Motor With Linkage Flux Estimation (쇄교자속 추정에 의한 브러쉬없는 직접 구동용 전동기의 순시 토오크제어)

  • Kim, Hyun-Soo;Chung, Se-Kyo;Kim, Kyeong-Hwa;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.574-577
    • /
    • 1996
  • In order to reduce the torque pulsation caused by non-sinusoidal flux distribution of the brushless direct drive motor(BLDDM), a new torque control technique is proposed. The linkage flux of the BLDDM is first estimated by using the model reference adaptive system (MRAS) technique and the instantaneous torque of the BLDDM is then estimated from the mathematical model including this estimated linkage flux. By using the estimated instantaneous torque of the BLDDM, the minor torque control loop to suppress the undesirable torque pulsation is designed. To show the effectiveness of the proposed control scheme, the simulations and experiments are carried out for the DSP-based BLDDM drive system with a power rate of 120W. It is well demonstrated from these results that the torque and speed control performance of the BLDDM is much improved by employing the proposed control scheme.

  • PDF

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

A Study on the Pivot Steering Control of an In-Wheel Drive Vehicle with Trailing Arm Suspensions (인휠 구동 트레일링 암 형식 차량의 제자리 회전 조향 제어 연구)

  • Kim, Chi-Ung;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.745-752
    • /
    • 2012
  • The pivot steering of an individual wheel motor drive vehicle is an effective steering maneuver in the narrow road, but it has become a matter of concern that the torque input of each wheel is very difficult to determine. In this study, the independent yaw moment control was proposed for the smooth pivot steering control of an in-wheel drive vehicle. For this control method, the vertical forces of tires were estimated from the trailing arm dynamic model, and the yaw moments of individual wheels were calculated from the vehicle dynamic model. Dynamic simulation results showed that the independent yaw moment control was much more effective on the minimization of the instabilities of pivot steering in comparison with the conventional direct yaw moment control with yaw rate feedback.