• Title/Summary/Keyword: Direct sintering

Search Result 105, Processing Time 0.029 seconds

What is the changing frequency of diamond burs?

  • Emir, Faruk;Ayyildiz, Simel;Sahin, Cem
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • PURPOSE. The purpose of this study was to determine the changing frequency of a diamond bur after multiple usages on 3 different surfaces. MATERIALS AND METHODS. Human premolar teeth (N = 26), disc shaped direct metal laser sintered CoCr (N = 3) and zirconia specimens (N = 3) were used in this study. Groups named basically as Group T for teeth, Group M for CoCr, and Group Z for zirconia. Round tapered black-band diamond bur was used. The specimens were randomly divided into three groups and placed with a special assembly onto the surveyor. 1, 5, and 10 preparation protocols were performed to the first, second, and third sub-groups, respectively. The subgroups were named according to preparation numbers (1, 5, 10). The mentioned bur of each group was then used at another horizontal preparation on a new tooth sample. The same procedure was used for CoCr and zirconia disc specimens. All of the bur surfaces were evaluated using roughness analysis. Then, horizontal tooth preparation surfaces were examined under both stereomicroscope and SEM. The depth maps of tooth surfaces were also obtained from digital stereomicroscopic images. The results were statistically analyzed using One-Way ANOVA, and the Tukey HSD post-hoc tests (${\alpha}=.05$). RESULTS. All of the groups were significantly different from the control group (P<.001). There was no significant difference between groups Z5 and Z10 (P=.928). Significant differences were found among groups T5, M5, and Z5 (P<.001). CONCLUSION. Diamond burs wear after multiple use and they should be changed after 5 teeth preparations at most. A diamond bur should not be used for teeth preparation after try-in procedures of metal or zirconia substructures.

Development of Investment Casting Technique using R/P Master Model (R/P 마스터모델을 활용한 정밀주조 공정기술의 개발)

  • Im, Yong-Gwan;Chung, Sung-Il;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.52-57
    • /
    • 1999
  • Funtional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported by song etc. But a system which can build directly 3D parts of high performance functional material as metal part would need long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we tranlsated the wax patterns to numerous metal prototypes by new investment casting process combined conventional investment casting with rapid pototyping & rapid tooling process. with this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P part to metal part.

  • PDF

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes (금속 나노입자 프린팅 공정을 이용한 유연전기소자 연구 현황)

  • Ko, Seung Hwan
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Flexible electronics are the electronics on flexible substrates such as a plastic, fabric or paper, so that they can be folded or attached on any curved surfaces. They are currently recognized as one of the most innovating future technologies especially in the area of portable electronics. The conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics. However, flexible polymer substrates are generally chemically incompatible with resists, etchants and developers and high temperature processes used in conventional integrated circuit processing. Additionally, conventional processes are time consuming, very expensive and not environmentally friendly. Therefore, there are strong needs for new materials and a novel processing scheme to realize flexible electronics. This paper introduces current research trends for flexible electronics based on (a) nanoparticles, and (b) novel processing schemes: nanomaterial based direct patterning methods to remove any conventional vacuum deposition and photolithography processes. Among the several unique nanomaterial characteristics, dramatic melting temperature depression (Tm, 3nm particle~$150^{\circ}C$) and strong light absorption can be exploited to reduce the processing temperature and to enhance the resolution. This opens a possibility of developing a cost effective, low temperature, high resolution and environmentally friendly approach in the high performance flexible electronics fabrication area.

Study on Synthesis and Sintering Characterization of Ti-Si System Ceramics by Self-Propagating High Temperature Synthesis (SHS법에 의한 Ti-Si계 세라믹스의 합성 및 소결체의 특성에 관한 연구)

  • Kim, Do-Kyung;Park, Sung;Cho, Duk-Ho;Cho, Kurn;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.265-274
    • /
    • 1994
  • Intermetallic Ti-Si system ceramics were synthesized from stochiometric mixtures of titanium and silicone powders in vacuum by Self-propagating High-temperature Synthesis(SHS). In each cases of Ti5Si3, Ti5Si4 and TiSi, and TiSi2 synthesis, 20wt% product dilution, direct ignition and SHS chemical furnace method were employed. The combustion modes, which were observed during the synthesis process by using the high speed camera, of Ti5Si3, Ti5Si4, TiSi, and TiSi2 exhibit spin, osciallatory, steady-state, and spin combustion, respectively. With increasing Ti/Si molar ratio an decrease of combustion velocities was found. From the results on the measurement of the flexural strength, the specimen hot pressed at 135$0^{\circ}C$ for 30 min using synthesized Ti5Si4 powders showed the highest flexural strength at 215 MPa.

  • PDF

Mold technology with 3D printing for manufacturing of porous implant (다공성 임플란트 제조를 위한 3D 프린팅 응용 금형기술)

  • Lee, Sung-Hee;Kim, Mi-Ae;Yun, Eon-Gyeong;Lee, Won-Sik
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.30-33
    • /
    • 2017
  • In this study, the mold technology for manufacturing of porous implant was investigated. Firstly, we considered the concept of insert molding technology with 3D printing of porous inert part. The part on implant was designed in the end region of the implant. And then main implant bodies were manufactured using conventional machining method. The other porous parts were designed and optimized with molding simulation. As the feature size of porous implant was so small that perfect feature of it using 3D printing technology could not be obtained. So, we proposed another scheme for manufacturing of the porous implant in the replace of the former approach. Polymer mold cores with 3D printing technology were considered. The effects of addictive manufacturing process parameters on the properties of mechanical and dimensional accuracy were investigated. Direct 3D printed polymer mold cores were designed and manufactured under the simulation of thermal and molding analysis. It was shown that 3D printed mold core with polymer could be adapted to the injection molding for porous implant.

Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel (균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작)

  • Park, Hyung-Pil;Cha, Baeg-soon;Lee, Sang-Yong;Choi, Jae-Hyuk;Lee, Byung-Ok
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

A Study on the Comparison Mechanical Properties of 3D Printing Prototypes with Laminating Direction (3D 프린팅 방식의 적층방향에 따른 시제품의 기계적 특성 비교에 관한 연구)

  • Park, Chan;Kim, Myung Hun;Hong, Sung Moo;Go, Jeung Sang;Shin, Bo Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.334-341
    • /
    • 2015
  • This paper summarizes the results of an investigation into the environmental factors that have an indirect impact on parts quality, as well as those process variables and modeling information that have a direct impact. The effects of strength, surface hardness, roughness, and accuracy of shape, that is, qualities that users generally need to know, were evaluated with laminating direction experimentally. The 3D printing methods used in this experiment were fused deposition modeling (FDM), stereolithography apparatus (SLA), selective laser sintering (SLS), 3D printing (3DP) and laminated object manufacturing (LOM). The goal was to achieve a high standard of quality control and product quality by optimizing the fabrication process.

Implementation of 3-Dimensional Cooling Channel in Injection Mold Using RT Technology (RT 기술을 이용한 사출금형의 3 차원 냉각 채널 구현)

  • Kim J.D.;Hong S.K.;Lee K.H.;Kim M.A.;Lee D.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.199-200
    • /
    • 2006
  • It will not be an exaggeration to say that one of the most important features of RT (Rapid Tooling) technology is to easy manufacturing complex shape of cooling channel in injection mold. That is, RT technology is hardly influenced complex shape of tool, Therefore, mold designer can optimize the position and shape of cooling channel whatever they want. In this study, we optimized cooling channel through CAE analysis to solve the problem; prototype-connector-mold applied conventional cooling channel, locally warped by internal stress: The effect of three-dimensional cooling channel was supported by simulation result. But it is impossible to produce injection mold applied three-dimensional cooling channel through machining operation. Therefore, we produced the prototype-connector-mold with three-dimensional cooling channel using Direct Metal Laser Sintering (DMLS) process, and get good-quality prototype-connector without warpage.

  • PDF

Development of Stacking and Transfer System for the Agile Fabrication (쾌속제작을 위한 적층 및 이송장치 개발)

  • 엄태준;주영철;민상현
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.126-130
    • /
    • 2002
  • This paper presents the basic concept of new solid freeform fabrication system using rapid prototyping method. The system could fabricate an arbitrary ceramic form by laser cutting, transferring, stacking, and sintering of each slide. The system consists mainly of laser apparatus. X-Y table, a slide transferring system, and electric oven. The system could fabricate an object that has smooth surface with comparatively short period of time. The system is effective in terms of its direct fabrication capability without second mechanical process. The fabricated shape could directly be used as part of a whole assembly and therefore its method could be applied to various application areas.

  • PDF