• 제목/요약/키워드: Direct shear stress

Search Result 268, Processing Time 0.025 seconds

An experimental study on the fracture of Nd:YAG laser welded amorphous foils (Nd:YAG 레이저를 이용한 비정질 박판 용접부의 파괴에 대한 실험적 연구)

  • 이건상
    • Laser Solutions
    • /
    • v.3 no.3
    • /
    • pp.31-37
    • /
    • 2000
  • In this paper, the possibilities of the laser overlap spot welding were studied to utilize the advantageous properties of amorphous metal foils. In order to estimate the usage of amorphous metals foils as structural members, the tensile shear strength and the fracture features were investigated. Although the crystalline zone on the surface was formed, it was not the direct cause of the fracture of the weld. The fracture of the weld resulted from the geometry discontinuity between the workpiece and the protrusion zone, which was formed during the weld process. The vein pattern - the typical feature of the fracture of the amorphous metal - was formed on the fracture surface. The tensile shear stress was reached to 1200 N/㎟ (2-foils overlap welding) and 900 N/㎟ (10-foils overlap welding), whereas the tensile strength of the workpiece was 1500-2000 N/㎟.

  • PDF

A Study on the Flow Behavior of the Viscoelastic Fluids in the Falling Ball Viscometer (낙구식 점도계를 이용한 점탄성유체의 유동에 관한 연구)

  • 전찬열
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1988
  • The falling ball viscometer has been widely used for measuring the viscosity of the Newtonian fluids because of its simple theory and low cost. The use of the falling ball viscometer for measuring the non-Newtonian viscosity has been of interest to rheologists for some years. The analysis of the experimental results in a falling ball viscometer rest on Stokes law which yields the terminal velocity for a sphere moving through an infinite medium of fluids. An attempt to use the falling ball viscometer to measure the non-Newtonian viscosity in the intermediate shear rate ranEe was sucessfully accomplished by combining the direct experimental obserbations with a simple analytical model for the average shear-stress and shear rate at, the surface of a sphere. In the experiments with highly viscoelastic polyacrylamide solutions the terminal velocity was observed to be dependent on the time interval between the dropping of successive balls. The time-dependent phenomenon was used to determine characteristic diffusion times of the concentrated solutions of polyacrylamide.

  • PDF

Anisotropy of shear strength according to roughness in joint surface (절리면 거칠기에 의한 전단강도 이방성)

  • 이창훈;정교철
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.421-437
    • /
    • 2002
  • In order to quantify the anisotropic properties of rock included joints and shear behavior in joint surface, the mold is Produced for rock joint surface using gypsum Plaster and Peformed for replicated joint models made of cement mortar. Rock sample is measured using mechanical profilometer before testing and their result is expressed quantitatively. The statistical parameters and the fractal dimension by fractal theory for roughness is investigated its coordinate value for numerical process. The shear strength to the shear displacement in low level normal stress ismaintained or increased in most joint models. Their results present that this relationship is depended several roughness properties in joint model for natural rock joint. The relationship between the shear strength and the Properties for profiles estimated by some statistical parameter in roughness has the low correlation and is not constant. The result between the data for direct shear test and using Barton's equation, Barton's equation has not the effectiveness for the effect of anisotropy and has not suitable to recognizing the properties for joint surface. It means that JRC has not the properties of anisotropic rock surface. The fractal dimension is well correlated with the data of direct shear test than those of JRC. New experimental formulae using fractal dimension is comported with the anisotropic properties for direct shear test.

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

Theoretical Study on Interfacial Stresses at RC Beam Repair-Purpose Overlayed by Latex Modified Concrete (LMC로 덧씌우기 보수된 RC보의 계면응력에 관한 연구)

  • Kim, Hyun-Oh;Kim, Seong-Hwan;Kim, Dong-Ho;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.179-184
    • /
    • 2004
  • Each year, new technological advancements for repair-purpose are being introduced to overlay the old deterioration of RC bridge deck at highway by latex-modified concrete. The days may come when this old problem will be successfully resolved. While the experimental works and researches are very active at both laboratory and field, only a few theoretical studies were performed on interfacial problems, especially on stress distribution and concentration of RC beam overlayed by latex-modified concrete. The repaired and strengthened structures would induce a premature failure due to the stress concentration at the adhesive layer of different material before the design expected failure. This paper investigated and proposed an analytical model for predicting interfacial shear and normal stresses of RC beam repair-purpose overlayed by latex-modified concrete. This would be used for predicting interfacial stresses and preventing premature failure at interfaces. This study modified Smith-Teng method for applying to cementitious repairing material, which was based on a direct governing equation and linear-elastic approach for interfacial normal and shear stresses. The proposed theoretical model was verified using commercial FEA program, LUSAS, in terms of interfacial stresses predicted by the proposed model and calculated by LUSAS.

  • PDF

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.

Study of the Static Shear Behaviors of Artificial Jointed Rock Specimens Utilizing a Compact CNS Shear Box (Compact CNS shear box를 활용한 모의 절리암석시료의 정적 전단 거동에 관한 연구)

  • Hanlim Kim;Gyeongjo Min;Gyeonggyu Kim;Youngjun Kim;Kyungjae Yun;Jusuk Yang;Sangho Bae;Sangho Cho
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.574-593
    • /
    • 2023
  • In this study, the effectiveness and applicability of a newly designed Compact CNS shear box for conducting direct shear tests on jointed rock specimens were investigated. CNS joint shear tests were conducted on jointed rocks with Artificially generated roughness while varying the fracture surface roughness coefficient and initial normal stress conditions. In addition, displacement data were validated by Digital image correlation analysis, fracture patterns were observed, and comparative analysis was conducted with previously studied shear behavior prediction models. Furthermore, the accuracy of the displacement data was confirmed through DIC analysis, the fracture patterns were observed, and the shear properties obtained from the tests were compared with existing models that predict shear behavior. The findings exhibited a strong correlation with specific established empirical models for predicting shear behavior. Furthermore, the potential linkage between the characteristics of shear behavior and fracture patterns was deliberated. In conclusion, the CNS shear box was shown to be applicable and effective in providing data on the shear characteristics of the joint.

Interlaminar stress behavior of laminated composite plates under Low velocity Impact (저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.

Direct Numerical Simulation of the Lock-on Phenomena in the Wake behind a Circular Cylinder in a Perturbed Flow at Re=360 (Re=360에서 교란유동장에 놓인 원형실린더 후류의 유동공진 현상에 대한 직접수치해석)

  • Park, Ji-Yong;Kim, Soo-Hyeon;Bae, Joong-Hun;Park, No-Ma;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.780-789
    • /
    • 2007
  • Lock-on phenomenon in the wake of a circular cylinder is investigated at the Reynolds number of 360 using direct numerical simulation (DNS). To induce lock-on, a streamwise velocity perturbation with a frequency of twice the natural shedding frequency is superimposed on the free stream velocity. The Reynolds stress distributions are investigated to analyze the streamwise force balance acting on the recirculation region and the results are compared with the previous experimental result. When the lock-on occurs, the pressure force on the recirculation region is shown to increase mainly due to the reversal of the Reynolds shear stress distribution, which is consistent with our previous results using PIV measurement. It is also shown that, with the lock-on, the strength of the primary vortices increases whereas that of the secondary vortices decreases significantly. Further, under the lock-on condition the wavelength of the secondary vortices increases by as much as 2.5 times.