• Title/Summary/Keyword: Direct methanol fuel cell, DMFC

Search Result 126, Processing Time 0.027 seconds

An investigation on anode electrocatalysts using grafting method for improvement of DMFC performances (Grafting 방법을 이용한 직접메탄올연료전지 애노드 촉매의 성능향상에 관한 연구)

  • Park, Jung-Bae;Han, Kook-Il;Kim, Ha-Suck
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • PtRu catalyst is most widely used as anode catalyst for a direct methanol fuel cell(DMFC). To promote the efficiency of the catalysts, it Is important to increase the triple phase boundary. In this study, we have tried to increase the triple phase boundaries in preparing electrocatalysts of the fuel cells, based on the process of grafting a proton-conducting agent onto the catalyst This grafted proton-conducting agent can act as an ionomer like Nafion, currently widely used ionomer. First, we have prepared the 80wt% PtRu/Ketjen Black electrocatalyst by an improved colloidal method. And, we have grafted methylsulfonate groups $(-CH_2SO_3H)$ into the catalyst as proton-conducting agents. As results of cyclic voltammety and single cell test of the membrane electrode assembly (MEA), we can conclude that the activity of the grafted electrocatalysts is superior to that of conventional ones, in performance of DMFCs. For our further study, we will investigate the optimum ratio of catalyst/grafted proton conduct Ing agent with maximum performance of a DMFC.

  • PDF

Direct Numerical Analysis of $CO_2$ degassing process in ${\mu}DMFC$ (마이크로 DMFC 에서 $CO_2$ degassing 과정의 직접 수치 해석)

  • Shin, Seung-Won;Shim, Jung-Ik;Wi, Wan-Seok;Jo, Sung-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2648-2653
    • /
    • 2007
  • Recently, increasing demand on not only lighter but also extremely mobile battery make micro fuel cell device very attractive alternative. By reducing the size of fuel cell, surface tension becomes dominant factor with minor gravitational effect. Therefore, it is very difficult to detach the $CO_2$ bubble generating on a cathode side in ${\mu}DMFC$ (micro direct methanol fuel cell). The degassing of a $CO_2$ bubble has drawn quite attention especially for ${\mu}DMFC$ due to its considerable effect on overall machine performance. Our attention has been paid to the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We use Level Contour Reconstruction Method (LCRM) which is simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

  • PDF

Polymer Materials for Polymer Electrolyte Fuel Cells: Sulfonated Poly(ether sulfone)s for Fuel Cell Membranes

  • Kim, H.J.;Lee, S.Y.;Cho, E.;Ha, H.Y.;Oh, I.H.;Lim, T.H.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.185-185
    • /
    • 2006
  • The performances of proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using $H_2/air$ gases as fuel and oxidant. A current density of $730\;mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$. Pt-Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced $83\;mW/cm^2$ of maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.

  • PDF

A Study on Thermoelectric Converter Using DMFC (Direct Methanol Fuel Cell) System (DMFC 시스템에 사용한 열전 변환기에 관한 연구)

  • Zhang, Jing-Liang;Moon, Chae-Joo;Chang, Young-Hak;Cheang, Eui-Heang;Kim, Tae-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.92-94
    • /
    • 2007
  • This article describes a thermoelectric converter, which is powered by thermoelectric (TE) power modules. This system uses TE devices that directly convert heat energy to electricity to power a converter using direct methanol fuel ceil (DMFC) system. The characteristics of the TE module were tested at different temperatures. A boost BC-DC converter was designed and controlled by a power-supply controller chip. Efficiency of about 80% can be achieved and because the thermoelectric converter system has not moving parts and has a small volume, the system can be carried about easily and conveniently to supply portable electric equipment and this is very important for some mobile equipment.

  • PDF

Multiscale Modeling and Simulation of Direct Methanol Fuel Cell (직접메탄올 연료전지의 Multiscale 모델링 및 전산모사)

  • Kim, Min-Su;Lee, Young-Hee;Kim, Jung-Hwan;Kim, Hong-Sung;Lim, Tae-Hoon;Moon, Il
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.

Studies on the Preparation of the Poly(vinyl alcohol) ion Exchange Membranes for Direct Methanol Fuel cell (폴리비닐알콜을 이용한 직접메탄을 연료전지용 이온교환막 제조에 관한 연구)

  • 임지원;천세원;전지현;남상용
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.191-199
    • /
    • 2003
  • Cation exchange polymer electrolyte membrane for the application of direct methanol fuel cell (DMFC) was studied. Poly(vinyl alcohol)(PVA) well known as a methanol barrier in pervaporation separation was used fur the base materials and poly(acrylic acid)(PAA) was used for the crosslinking agent with various concentration. Methanol permeability, ion conductivity, ion exchange capacity, water contents and fixed ion concentration of the membranes were investigated to evaluate the performance of the fuel cell electrolyte membrane. Methanol permeability and ion conductivity of the membranes were decreased with increasing PAA content and were increased over 15% of PAA content. These phenomena would be explained with the introduction of hydrophilic crosslinking agent. The membranes with 15% content of PAA showed methanol permeability of $6.49{\times}10^{-8}/cm^2/s,\; 2.85{\times}10^{-7}CM^2/s$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion conductivities of the membrane were $2.66{\times}10^{-3}\;S/cm,$ $9.16{\times}10^{-3}\;S/cm$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion exchange capacity, water content and fixed ion concentration of the membrane were revealed 1.32 meq/g membrane,0.25 g $H_2$O/g membrane and 5.25 meq/g $H_2O$, respectively.

A study on the Thermopneumatic Actuator with Phase Change for Micro Pump (상변화를 이용한 열공압형 마이크로 펌프용 액츄에이터 성능에 관한 연구)

  • Park, S.;Hwang, J.Y.;Lee, S.;Kang, K.;Kang, H.;Jang, J.;Lee, H.;Kang, S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.425-428
    • /
    • 2006
  • Recently, Direct Methanol Fuel Cell (DMFC) for portable devices has been received much attention because DMFC has a possibility of higher energy density than electrical batteries and smaller size than other fuel cells. This paper presents the fabrication and test of a thermopneumatic microactuator with a phase change for DMFC. A microactuator consists of an inlet an outlet a chamber, a heater and a sensor of resistance temperature detector(RTD). The micoractuator is fabricated by the spin-coating process, the lithograph process, the deep RIE process and so on. The total size of microactuator is $20{\times}20{\times}0.53mm^3$. When the current is applied, the heater heats liquid in chamber. As a result the liquid vaporizes. The response of temperature in the chamber was measured using thermocouple The changed temperature is $3^{\circ}C$ for 5 sec at 0.032W.

  • PDF

Selection of Fuel/Air feeders in BOP system for a DMFC (직접메탄올 연료전지 BOP 시스템에서 연료/공기 공급 장치의 선정)

  • Kim, Ki-Wong;Kim, Seo-Young;Kang, Byung-Ha
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.248-251
    • /
    • 2008
  • The objective of this study is to select fuel/air feeders for reliable operation of BOP(Balance of Plant) system for a DMFC (direct methanol fuel cell). A 42-cell 50W DMFC stack is considered for performance comparison of selected fuel pumps and air blowers. The present stack has two serpentine anode channels with depth of 1.2 mm and rib of 1 mm and one serpentine cathode channel with depth of 1.5 mm and rib of 1 mm. The pressure drop through the stack is estimated in advance by utilizing the pre-existing loss coefficients data for various flow configurations. Then the operating points of feeders are determined at the balance point of the flow impedance curves for the channels in the DMFC stack and the selected pump and blower performance curves. After estimating the operating flow rates in the anode and cathode channels, the flow measurement with the selected feeders is performed for the comparison with the estimated flow rates. The measured results show that the discrepancy between the estimation and the measurement for the cathode is about 26%, about 3% for the anode

  • PDF