• Title/Summary/Keyword: Direct methanol fuel cell, DMFC

Search Result 126, Processing Time 0.025 seconds

Analytical Solution of Direct Methanol Fuel Cell Model (직접메탄올 연료전지 모델수립과 해석해)

  • Park, Tae-Hyun;Kim, In-Ho
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.53-59
    • /
    • 2004
  • Direct methanol fuel cells (DMFC) are presently paid attention due to their higher energy density and portability. In order to slove problems such as high anodic overpotential and methanol crossover in DMFC, an analytical analysis for electrochemical model using Tafel equation and limiting current density was performed. Change of operational parameters such as temperature, transfer coefficients and membrane thickness results in helpful informations on voltage-current curves.

  • PDF

A Study on the Performance Characteristics of Direct Methanol Fuel Cell with Changing of Catalyst Loading (촉매량 변화에 따른 직접 메탄올 연료전지의 성능 특성에 관한 연구)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.467-473
    • /
    • 2008
  • This study is to investigate the influence of catalyst loading quantity on the direct methanol fuel cell (DMFC) performance. In this paper, Pt-Ru and Pt-black loading as the catalyst were varied from 1 to $4mg/cm^2$ at the anode and cathode, respectively. The experiment was conducted with single fuel cell consisted of $5cm^2$ effective electrode area, serpentine type flow pattern and Nafion 117 membrane. Also, AC impedance and methanol crossover current were measured to investigate the performance loss precisely. As a result, the performance of fuel cell was significantly increased with the increase of cathode catalyst loading. However, the performance did not increase further above a certain Pt-Ru catalyst loading as the increase of anode catalyst loading.

Development of methanol resistance catalysts for DMFC cathodes (Methanol에 저항성을 가진 DMFC용 cathode catalyst의 개발)

  • Oh, Jong-Gil;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.204-207
    • /
    • 2007
  • DMFC(direct methanol fuel cell)는 액체연료의 이동과 저장의 용이성 때문에 이동용 장치를 위한 전원공급 장치로서 오랫동안 관심을 받아왔다. 하지만 methanol crossover는 DMFC의 상용화 이전에 해결해야 할 문제이다. 이를 위해 많은 분야에서 연구가 진행되고 있고, 그중에서 methanol에 저항성을 가진 촉매의 개발에 활발히 연구가 진행되고 있다. 본 연구에서는, 표연개질 된 PtCo/C 촉매를 사용하여 메탄올에 저항성을 가진 촉매를 합성하였다. 합성된 촉매의 size와 morphology를 알아보기 위해 transmission electron microscopy (TEM)를 사용하였다. 또한 methanol 존재 하에 산소환원반응의 activity를 알아보기 위해 Rotating ring disk electrode(RRDE) test를 하였고, MEA를 제작하여 full cell test도 병행하였다.

  • PDF

Characterization of Methanol Crossover through Nafion Membranes by Direct Cell Performance Measurement

  • Park, Kyung-Won;Kim, Young-Min;Kwon, Bu-kil;Choi, Jong-Ho;Park, In-Su;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.226-231
    • /
    • 2002
  • Power densities produced by the permeation of methanol through membranes were directly measured by inserting the membrane in front of anode in a membrane-electrode-assembly of a direct methanol fuel cell (DMFC). The power density was closely related to the loss of power in the DMFC and was strongly affected by temperature. As the cell temperature was increased, the power density resulting from methanol crossover was increased. The increase in methanol crossover had be attributed to diffusion caused or affected by temperature. Methanol crossover a major effect on the performance of a DMFC at a relatively low temperature with $26\%\;loss\;at\;30^{\circ}C$. In order to reduce methanol crossover, a conventional Nafion membrane was modified by the incorporation of Pt or Pd. The reduction in methanol crossover was investigated in these modified membranes by our cell performance measurement. Pt and Pd particles incorporated in the Nafion membranes block methanol pathway and prevent methanol transport through the membranes, which was proved by combining with liquid chromatography.

Characterization of Polymer Blends of Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) for DMFC (직접메탄올 연료전지용 Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) 블렌드 막의 특성 연구)

  • Cheon, Hun Sang;Lee, Choong Gon;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.144-149
    • /
    • 2005
  • Sulfonated poly(ether ether ketone) (SPEEK) was blended with poly(ether sulfone) (PES) at various compositions. To investigate the possibility of using the blend membranes as polymer electrolyte membranes for direct methanol fuel cell, the blend membranes were characterized in terms of methanol permeability, proton conductivity, ion exchange capacity, and water content. Both proton conductivity and methanol permeability of SPEEK were relatively high. As the amount of PES increased, methanol permeability decreased more rapidly compared to proton conductivity. The experimental results indicated that the blend membrane with 40 wt% PES was the best choice in terms of the ratio of proton conductivity to methanol permeability.

Composite Membrane Containing a Proton Conductive Oxide for Direct Methanol Fuel Cell

  • Peck, Dong-Hyun;Cho, Sung-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Kim, Jeong-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2008
  • The composite membrane for direct methanol fuel cell (DMFC) was developed using $H_3O^+-{\beta}"-Al_2O_3$ powder and perfluorosulfonylfluroride copolymer (Nafion) resin. The perfluorosulfonylfluroride copolymer (Nafion) resin was mixed with $H_3O^+-{\beta}"-Al_2O_3$ powder and it was made to sheet form by hot pressing. The electrodes were prepared with 60 wt% PtRu/C and 60wt% Pt/C catalysts for anode and cathode, respectively. The morphology and the chemical composition of the composite membrane have been investigated by using SEM and EDXA, respectively. The composite membrane and $H_3O^+-{\beta}"-Al_2O_3$ were analyzed by using FT-IR and XRD. The methanol permeability of the composite membranes was also measured by gas chromatography (GC). The performance of the MEA containing the composite membrane (2wt% $H_3O^+-{\beta}"-Al_2O_3$) was higher than that of normal pure Nafion membrane at high operating temperature (e.g. $110^{\circ}C$), due to the homogenous distribution of $H_3O^+-{\beta}"-Al_2O_3$, which decreased the methanol permeability through the membrane and enhanced the water contents in the composite membrane.

Preparation and Comparative Test of Polypyrrole Electrodes for Direct Methanol Fuel Cell

  • Park, Jae-Chan;Kim, Jeong-Soo;Jung, Doo-Hwan
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.181-186
    • /
    • 2002
  • The displacement of carbon black to polypyrrole as a catalyst supporter in the fuel electrode of a direct methanol fuel cell was investigated. Polypyrrole was obtained as a black powder by the chemical polymerization of pyrrole with three different oxidants. The synthesized polypyrroles were pasted on carbon paper and transformed to the fuel electrodes with electrochemically deposited platinum. The prepared fuel electrode was assembled and mounted in a unit cell using a membrane and cathodic electrode film. In comparison with the carbon black fuel electrode, the performance of the unit cell was analyzed in relation to the state of the catalyst, the type of oxidant, and the morphology of the polypyrrole powder.

Quantification of Methanol Concentration in the Polymer Electrolyte Membrane of Direct Methanol Fuel Cell by Solid-state NMR

  • Kim, Seong-Soo;Paik, Youn-Kee;Kim, Sun-Ha;Han, Oc-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.96-102
    • /
    • 2008
  • Direct quantification of methanol in polymer electrolyte membrane (PEM) by solid-state nuclear magnetic resonance (NMR) spectroscopy was studied and the methanol concentrations in PEM produced by crossover and diffusion were compared. The error range of the quantification was not smaller than ${\pm}15%$ and the amount of the methanol crossed over in our direct methanol fuel cells (DMFCs) was less than the methanol diffused to PEM. The methanol concentration in the PEM of the DMFC operated at different current densities were equivalent.

Simulation of governing equations for direct methanol fuel cell(DMFC) using FEMLAB (FEMLAB를 이용한 직접메탄올 연료전지(DMFC) 지배방정식의 전산모사)

  • Park, Tae-Hyeon;Kim, In-Ho
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2004
  • Direct methanol fuel cell(DMFC) with proton exchange membrane (PEM) has advantages over the conventional power source (e.g. vehicle). DMFC, however, has a problem to be solved such as methanol crossover, high anodic overpotential and limiting current density, etc. The physicochemical phenomena in DMFC can be described by coupled PDEs (partial differential equations), which can be solved by a PDE solver. In this paper, we utilized a commercial software FEMLAB to solve the PDEs. The FEMLAB is one of the software programs available which are developed as a solver for building physics problems based on PDEs and is designed to simulate systems of coupled PDEs which may be 1D, 2D, 3D, non-liner and time dependent. We performed simulation using the Tafel equation as an electrochemical reaction model to analyze methanol concentration profile in DMFC system. We confirm that the rapid decrease of methanol concentration at anodic catalyst layer with the increase of the current density is a main reason of the low performance in DMFC through simulation results.

  • PDF