• Title/Summary/Keyword: Direct measurement

Search Result 1,583, Processing Time 0.036 seconds

Calibration and INvestigation into Measurement Performance of a Visual Sensing System (시각측정시스템의 캘리브레이션 및 측정성능 검토)

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.113-121
    • /
    • 1999
  • It is necessary to calibrate measurement systems to enhance its measurement accuracy. The visual sensing system that is presented in our previous work has to be calibrated, too. It is a multiple mirror system for three-dimensional measurement, which is composed of a camera and a series of mirrors. It is important to calibrate the positions and orientations of the mirrors relative to the camera because they have direct influence on the relationship between the image plane and the task space. This paper presents the calibration method for the visual sensing system. To confirm the measurement performance of the implemented system. its measurement accuracy in measuring the locations in three-dimensional space is investigated. A series of experiments for measuring the locations of the circle-shaped marks are performed. Experimental results show that the sensing system can be effectively used for three-dimensional measurement.

  • PDF

The Experience in Dose Measurement of IVR with Glass Dosimeter System

  • Nishizawa, Kanae;Moritake, Takashi;Iwai, Kazuo;Matsumaru, Yuji;Tsuboi, Koji;Maruyama, Takashi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.269-271
    • /
    • 2002
  • It is reported that exposure for the patient and the medical staff from IVR is large. Direct measurement of patient exposure is difficult, since the measurement disturbs reading of images. The fluorescence glass-dosimeter system consisting of small-size glass chips is developed in recent years. Owing to its small size and physical characteristics, direct monitoring of surface dose may be feasible. The dose measurement for patient and medical staff during head interventional radiology (IVR) examinations was tried by using the fluorescence glass-dosimeter system. A dose response of the glass dosimeter is almost linear in large dose range but its energy dependency is high. About 20% variation of sensitivity was observed in the effective energy of 45-60keV which was used in IVR. In spite of this shortcoming, the fluorescence glass-dosimeter system is a convenient means for a dose monitoring during IVR performance.

  • PDF

A Basic Study on Structural Health Monitoring using the Kalman Filter (칼만 필터를 이용한 구조 안전성 모니터링에 관한 기초 연구)

  • Park, Myong-Jin;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.175-181
    • /
    • 2020
  • For the success of a structural integrity management, it is essential to acquire structural response data at some critical locations with limited number of sensors. In this study, the structural response of numerical model was estimated by data fusion approach based on the Kalman filter known as stochastic recursive filter. Firstly, transient direct analysis was conducted to calculate the acceleration and strain of the numerical standing beam model, then the noise signals were mixed to generate the numerical measurement signals. The acceleration measurement signal was provided to the Kalman filter as an information on the external load, and the displacement measurement, which was transformed from the strain measurement by using strain-displacement conversion relationship, was provided into the Kalman filter as an observation information. Finally, the Kalman filter estimated the displacement by combining both displacements calculated from each numerically measured signal, then the estimated results were compared with the results of the transient direct analysis.

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

A Study on Dose and Image Quality according to X-ray Photon Detection Method in Digital Radiography System (Digital Radiography System에서 X선 광자 검출 방식에 따른 선량 및 화질 특성에 관한 연구)

  • Hong, Sun Suk;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.247-253
    • /
    • 2013
  • The purpose is a comparative evaluation in the DR System according to the dosimetry and image quality of the quantitative and objective via Direct digital radiography, Indirect digital radiography, Image intensifier (Charge Coupled Device type) digital radiography. The experimental method used rando phantom and measured the entrance surface dose. And through using the measured entrance surface dose and then using the PCXMC program were evaluated risk due to irradiation and the effective dose. SNR and NPS and CNR were measured and analyzed by using 21cm acryl phantom. Significance of measured value was evaluated by statistics method. Entrance surface dose, major organ dose, effective dose all of them were measured the lowest rated in direct DR when it is on the basis of direct DR dose, high-dose ratio were measured in I.I DR approximately 1.3 times, indirect DR approximately 2.4 times. Risk in accordance with radiation also was measured same as dose ratio. On the conclusion that SNR measurement result based on direct DR SNR measurements, low-SNR ratio were measured in I.I DR approximately 7.25 times, indirect DR approximately 1.48 times. On the conclusion that CNR measurement result based on direct DR CNR measurements, high-dose ratio were measured in I.I type DR approximately 1.16 tims and low-dose ratio were measured in indirect DR approximately 0.87 times. Therefore Direct DR system using a-selenium sensing element to detect x-ray photon is thought effectively at the examination such as infant to sensitive irradiation and the genital gland. Because quality image is built by low dose. Also when it is necessary that image test requiring many diagnosis information, indirect DR system is thought effectively.

Assessment of Displacement and Axial Force of Earth Retaining Wall at Each Excavation Step Using Direct Algorithm Back Analysis (직접알고리즘 역해석 기법을 이용한 굴착단계별 흙막이 가시설 변위 및 축력의 적정성 평가)

  • So-Ra Kang;Je-Seok Jeon;Yeong-Jin Lee;Jun-Seok Lee;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • In this study, direct algorithm-based back analysis was utilized to perform back analysis on two actual earth retaining wall fields, which was then compared with genetic algorithm-based method to evaluate the suitability of the back analysis. Additionally, in order to propose effective utilization methods of the program, the measurement data, as the input for the back analysis, was varied for each excavation step, and the applicability of the back analysis results(displacement, axial force) was examined. The research findings indicate that both direct algorithm and genetic algorithm show high applicability; however, the optimization for this program is better predicted by the direct algorithm. Moreover, in order to effectively use the back analysis program employing the direct algorithm, it was evaluated that relatively accurate prediction of the earth retaining wall behavior could be achieved by inputting measurement data from the 7th excavation step for fields with final excavation steps ranging from 8 to 11.

Concentration Measurement of Alcohol Solution Using Immersion-Type On-Line Refractometer (침적식 온라인 굴절계를 이용한 알코올 농도의 측정)

  • 정옥진;김영한
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.473-477
    • /
    • 2003
  • An immersion-type on-line refractometer useful for the in-situ measurement of chemical composition and temperature is developed, and its performance is examined by applying the refractometer to known alcohol solution having concentrations between 0 vol. % and 25 vol. %. Because refractive index and temperature are measured simultaneously, it is possible to compensate the effect of temperature for fast and direct measurement. The outcome of composition measurement for the different concentrations of alcohol solution indicates that the device is suitable for the chemical composition measurement by yielding stable and reproducible reading.