• Title/Summary/Keyword: Direct contact

Search Result 992, Processing Time 0.027 seconds

A Study on the Effect of Basic Need Variables on the Modesty and Aesthetics in the Selection of Clothing (의복의 정숙성.심미성에 영향을 미치는 관련변인 연구(II) -기본욕구를 중심으로-)

  • 강경자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.2
    • /
    • pp.180-188
    • /
    • 1994
  • The purpose of this study was to evaluate the effect of basic needs and demographic variables of adult woman on the modesty and aethetics In the selection of clothes. The results of the study were as follows: 1. There are factors which have effect on variables of need. School careers have effect on physical need. Age, marriage status and household type have effect on safty need. Native community and household type have effect on self-esteem. School career, native community, household type and frequency of contact with mass media have effects on need of self-actualizing and native community has effect on the aesthetic need. 2. Physical bleed, self-esteem, self-actualization, safety need, fiequency of contact with mass media, age, native community and income have direct effect on the modesty of clothing. 3. Aethetic and self-actualization need, frequency of contact with mass media and income have direct effect on the aethetics of clothing.

  • PDF

Performance of Air-Water Direct Contact Heat Exchanger Linked to Heat Pump (히트펌프에 연계된 공기-물 직접접촉식 열교환기의 성능)

  • Kim, Y.H.;Keum, D.H.;Ryou, Y.S.;Kang, Y.K.;Kim, J.G.;Jang, J.K.;Lee, H.M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.80.2-80.2
    • /
    • 2011
  • Fossil fuel was a major energy resource but the consumption of fossil fuel will decrease gradually because of limited deposits and non-environmental features. In contrast, because the renewable energy resources are infinite and sustainable, their consumption has increased annually. To promote the supply of these infinite natural energy we have to develop more efficient and inexpensive heat recovery system. In this study a simple device was designed as a heat exchanger, that is a direct contact heat exchanger. This heat exchanger was manufactured in cylindrical shape with height of 1,500 mm and diameter of 1,000 mm. To test the efficiency of this heat exchanger, it was connected to the evaporator of heat pump system. During the experimental tests, the humid air of $10{\sim}30^{\circ}C$ was supplied to this air-to-water heat exchanger and then the water flow rate was set to 2500~3500 L/h. Heat recovery rate of this heat exchanger increased in proportion to entering air temperature and water flow rate.

  • PDF

Effect of ultrasonic irradiation on membrane fouling and membrane wetting in direct contact membrane distillation process (초음파 조사가 직접 접촉식 막증발 공정의 막오염과 막젖음에 미치는 영향)

  • Jang, Yongsun;Choi, Yongjun;Lee, Sangho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.343-350
    • /
    • 2016
  • Membrane distillation (MD) is a novel separation process that have drawn attention as an affordable alternative to conventional desalination processes. However, membrane fouling and pore wetting are issues to be addressed prior to widespread application of MD. In this study, the influence of ultrasonic irradiation on fouling and wetting of MD membranes was investigated for better understanding of the MD process. Experiments were carried out using a direct contact membrane distillation apparatus Colloidal silica was used as a model foulants in a synthetic seawater (35,000 mg/L NaCl solution). A vibrator was directed attached to membrane module to generate ultrasonic waves from 25 kHz (the highest energy) to 75 kHz (the lowest energy). Flux and TDS for the distillate water were continuously monitored. Results suggested that ultrasonic irradiation is effective to retard flux decline due to fouling only in the early stage of the MD operation. Moreover, wetting occurred by a long-term application of ultrasonic rradiation at 75 kHz. These results suggest that the conditions for ultrasonic irradiation should be carefully optimized to maximize fouling control and minimize pore wetting.

Thermodynamic Analysis of Hydrogen Lquefaction Systems Using Gifford-McMahon Cryocooler

  • Chang, Ho-Myung;Park, Dae-Jong;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 2000
  • Thermodynamic cycle analysis is presented to estimate the maximum liquefaction rate of hydrogen for various systems using a Gifford-McMahon(GM) cryocooler. Since the present authors` previous experiments showed that the gaseous hydrogen was liquefied approximately at the rate of 5.1 mg/s from the direct contact with a commercial two-stage GM refrigerator, this study has been proposed to predict how much the liquefaction rate can be increased in different configurations using the GM cooler and with improved heat exchangers. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the Linde-Hampson(L-H) system precooled by single-stage GM, the direct-contact system with two-stage GM, the L-H system precooled by two-stage GM, and the direct-contact system with helium GM-JT (Joule-Thomson). The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, even though the highly effective heat exchangers may be employed. It is concluded that the liquefaction rate is limited mainly because of the cooling capacity of the commercially available GM cryocoolers and a practical scale of hydrogen liquefaction is possible only if the GM cooler has a greater capacity at 70-100 K.

  • PDF

Development and Research of Thermal Management Equipment for Efficiency Enhancement of PEMFC Systems (PEMFC 시스템 효율 향상을 위한 열 관리 설비 개발 및 연구)

  • JAEHWAN KIM;JISEUNG LEE;INSEAK KANG;HYUNCHUL JU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2024
  • This study introduced a direct contact heat exchanger to enhance the efficiency of polymer electrolyte membrane fuel cells (PEMFCs) systems. According to previous research, 28% of the operating costs of fuel cell systems are attributed to heat exchanger devices, prompting the design of a direct contact heat exchanger to address this issue. Optimal configurations were determined through computational fluid dynamics analysis and experimental device fabrication, and the enhanced heat exchange performance of the heat exchanger was experimentally confirmed. Through this, the contribution of the direct contact heat exchanger to the heat management and efficiency enhancement of PEMFC systems was established.

Reduction of metal-graphene contact resistance by direct growth of graphene over metal

  • Hong, Seul Ki;Song, Seung Min;Sul, Onejae;Cho, Byung Jin
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.171-174
    • /
    • 2013
  • The high quality contact between graphene and the metal electrode is a crucial factor in achieving the high performance of graphene transistors. However, there is not sufficient research about contact resistance reduction methods to improve the junction of metal-graphene. In this paper, we propose a new method to decrease the contact resistance between graphene and metal using directly grown graphene over a metal surface. The study found that the grown graphene over copper, as an intermediate layer between the copper and the transferred graphene, reduces contact resistance, and that the adhesion strength between graphene and metal becomes stronger. The results confirmed the contact resistance of the metal-graphene of the proposed structure is nearly half that of the conventional contact structure.

A Computational Efficient General Wheel-Rail Contact Detection Method

  • Pombo Joao;Ambrosio Jorge
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.411-421
    • /
    • 2005
  • The development and implementation of an appropriate methodology for the accurate geometric description of track models is proposed in the framework of multibody dynamics and it includes the representation of the track spatial geometry and its irregularities. The wheel and rail surfaces are parameterized to represent any wheel and rail profiles obtained from direct measurements or design requirements. A fully generic methodology to determine, online during the dynamic simulation, the coordinates of the contact points, even when the most general three dimensional motion of the wheelset with respect to the rails is proposed. This methodology is applied to study specific issues in railway dynamics such as the flange contact problem and lead and lag contact configurations. A formulation for the description of the normal contact forces, which result from the wheel-rail interaction, is also presented. The tangential creep forces and moments that develop in the wheel-rail contact area are evaluated using : Kalker linear theory ; Heuristic force method ; Polach formulation. The methodology is implemented in a general multibody code. The discussion is supported through the application of the methodology to the railway vehicle ML95, used by the Lisbon metro company.

Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization (나노섬유의 특성분석을 위한 레이저 접촉각 측정기의 효율성 연구)

  • 신경인;안선훈;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.554-559
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. The instrument may have a possibility to characterize newly developed nano-fibers. When the laser beam impinges on an edge of an interface of liquid and solid, projected beam were split across and made two straight lines on a tangent screen. From the result, it could measure the contact angle directly by reading the angle between two split beams. The purpose of this study was to prove reliability and reproducibility of the contact angle measurement instrument by laser beam projection compare to the conventional one by microscope through the comparative experiment and questionnaire. Test samples were selected by consideration of hydrophilic and hydrophobic, such as nylon 6 and polypropylene, respectively. The laser contact angle measurement has accurate, fast and convenient method to measure contact angle, and it can be a unique method to characterize nano-fibers.

A Study on Direct Current Measurement Using Magneto-Optical LMF Method (자기장학 누설자속법을 응용한 직류전류계측법에 관한 연구)

  • Lee, Jin-Yi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2004
  • It is necessary to measure the direct current with a non-contact methodology for the liquid or gas phase, as welt as the conducting metals. This paper described a theoretical consideration and experimental verification for a non-contact quantitative direct current measurement system using the Faraday effect and magnetic flux leakage. The leakage of magnetic flux occurs around a gap when a ferromagnetic core including the discontinuous gap is magnetized. Two large anisotropic domains in a magneto-optical film are occurred by the vertical component of leaked magnetic flux and the domain walls are paralleled to the center of the gap. Here, the symmetrical arrangement of domains are deflected when a vertical magnetic field is applied to the magneto-optical film. The domain wall of the magneto-optical film are relocated when a measuring current passes through the ferromagnetic core. Therefore, a direct current passing through the core can be determined quantitatively by the measurement of moving distance of the domain wall.

An Experimental Study of the Effect of Process Conditions on Direct Surface Forming of a Light-Guide (성형조건에 따른 부분 압축가열방식의 도광판 성형에 관한 실험적 연구)

  • 조광환;윤경환
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • A light-guide is one of several important components of backlight unit in TFT-LCD. The manufacturing technology and optical system design of the light guide is very sensitive to quality and cost of the TFT-LCD module. In the present study a new manufacturing method which is called as direct surface forming(DSF) has been tested under various conditions. DSF is very similar to the well-known hot embossing except for partial contact between mold and substrate. The final V-groove pattern shows different shapes depend on the temperature of mold surface, contact time of mold and depth of V-groove.