• Title/Summary/Keyword: Direct Write Technology

Search Result 22, Processing Time 0.019 seconds

Fabricating Using Nano-particulates with Direct Write Technology

  • Sears, James;Colvin, Jacob;Carter, Michael
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.372-373
    • /
    • 2006
  • Modern business trends call for miniaturization of electronic systems. One of the major impedances in this miniaturization is the conductive and inductive components in chips and circuit boards. Direct Write Technology can write these soft magnetic materials, thus allowing for further miniaturization of inductor devices. Another obstacle in electronics fabrication is the size limitations of thick screen-printing and the material limitations in ink jet printing. Direct Write Technologies address both of these limitations by providing feature sizes less than 20 microns with a wide range of materials possibilities. A discussion of the application of these nano-particulate materials by Direct Write Technologies will be presented.

  • PDF

DEVELOPMENT OF PREDICTION MODEL OF THE SHAPE OF DEPOSITED PARTICLES APPLIED FOR AEROSOL BASED DIRECT-WRITE TECHNOLOGY (Aerosol을 이용한 Direct-Write 시스템에서 침착된 입자의 형상예측 모델에 관한 연구)

  • Park, Jun-Jung;Baek, Seong-Gu;Rhee, Gwang-Hoon
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Direct Write Technologies are being utilized in various industrial fields such as antennas, engineered structures, sensors and tissue engineering. With Direct Write Technologies, producing features have the mesoscale range, from 1 to 100 microns. One form of the Direct Write Technologies is based on aerosol dynamics. The shape of deposited aerosols determine the form of products in the Direct Write Technology based on aerosol dynamics. To predict shape of deposited aerosol, a prediction model is created. In this study, we estimated Line-Width and Line-Thickness from the prediction model. Results of prediction model is valid from comparison with experimental results.

A Study on Direct Cache-to-Cache Transfer for Hybrid Cache Architecture to Reduce Write Operations (쓰기 횟수 감소를 위한 하이브리드 캐시 구조에서의 캐시간 직접 전송 기법에 대한 연구)

  • Juhee Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2024
  • Direct cache-to-cache transfer has been studied to reduce the latency and bandwidth consumption related to the shared data in multiprocessor system. Even though these studies lead to meaningful results, they assume that caches consist of SRAM. For example, if the system employs the non-volatile memory, the one of the most important parts to consider is to decrease the number of write operations. This paper proposes a hybrid write avoidance cache coherence protocol that considers the hybrid cache architecture. A new state is added to finely control what is stored in the non-volatile memory area, and experimental results showed that the number of writes was reduced by about 36% compared to the existing schemes.

  • PDF

Fabrication of 3D-Printed Circuit Device using Direct-Write Technology (Direct Write 기술을 이용한 3DCD의 제작)

  • Yun, Hae Young;Kim, Ho Chan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • Generally, electrical circuits are fabricated as Printed Circuit Boards (PCBs) and mounted on the casing of the product. Additionally, this requires many other parts and some labor for assembly. Recently, molding technology has increasingly been applied to embed simple circuits in plastic casing. The technology is called a Molded Interconnected Device (MID). By using this technology, PCB fabrication can be replaced by molding, and much of the corresponding assembly process for PCBs can be eliminated if the circuit is simple enough for molding. Furthermore, as the improvement of conductive materials and printing technologies of simple electric circuits can be printed directly on the casing part, this also reduces the complexity of the product design and production cost. Therefore, this paper introduces a new MID fabrication process using direct 3D printing technology. Additionally, it is applied to an automotive part of a cruise control switch. The methodology and design are shown.

A Study on Design and Cache Replacement Policy for Cascaded Cache Based on Non-Volatile Memories (비휘발성 메모리 시스템을 위한 저전력 연쇄 캐시 구조 및 최적화된 캐시 교체 정책에 대한 연구)

  • Juhee Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.106-111
    • /
    • 2023
  • The importance of load-to-use latency has been highlighted as state-of-the-art computing cores adopt deep pipelines and high clock frequencies. The cascaded cache was recently proposed to reduce the access cycle of the L1 cache by utilizing differences in latencies among banks of the cache structure. However, this study assumes the cache is comprised of SRAM, making it unsuitable for direct application to non-volatile memory-based systems. This paper proposes a novel mechanism and structure for lowering dynamic energy consumption. It inserts monitoring logic to keep track of swap operations and write counts. If the ratio of swap operations to total write counts surpasses a set threshold, the cache controller skips the swap of cache blocks, which leads to reducing write operations. To validate this approach, experiments are conducted on the non-volatile memory-based cascaded cache. The results show a reduction in write operations by an average of 16.7% with a negligible increase in latencies.

  • PDF

Contact Resistance between Flexible Tactile Sensor Fabricated by Direct Write and Copper Alloy Terminals (Direct write 기술로 제작된 유연촉각센서와 동합금 단자의 접촉저항)

  • Kim, Jindong;Bae, Yonghwan;Yun, Haeyong;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.111-116
    • /
    • 2020
  • Flexible tactile sensors, which are primarily used as grippers in robots, are mainly used to handle highly elastic or highly flexible objects. That is, flexible grippers are used when an object cannot be sufficiently controlled by applying a specific output force or taking a specific grabbing action. This is because a flexible tactile sensor needs to measure the pressure applied directly to held objects while deforming according to the shape of the object to be handled. CNT-based sensors used to be made from a highly flexible polymer to give flexibility and it is known that the sensors are greatly affected by the contact resistance of the terminal that connects the sensor to an electrical circuit; therefore, this paper clarifies the contact resistance of MWCNTs-based flexible tactile sensors and terminals. The effects of main and plating materials for terminals are investigated and the combinations of main and plating materials that exhibit contact resistance are measured in a typical industrial environment.

Conductive Inks Manufactured with the Help of Low Melting Metals (용해도 낮은 금속을 이용한 전기 전도성 잉크)

  • Han, Kenneth N.;Kim, Nam-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.126-131
    • /
    • 2008
  • In this investigation, various factors affecting manufacturing conductive inks are presented, examined and discussed. The discussion includes inherent difficulties in making conductive inks successful and at the same time offers ways in which these difficulties might be overcome. One of the solutions to overcome such difficulties is to use low melting metals and alloys. This aspect is also detailed.

A New EEPROM with Side Floating Gates Having Different Work Function from Control Gate

  • Youngjoon Ahn;Sangyeon Han;Kim, Hoon;Lee, Jongho;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.157-163
    • /
    • 2002
  • A new flash EEPROM device with p^+ poly-Si control gate and n^+ poly-Si floating side gate was fabricated and characterized. The n^+ poly-Si gate is formed on both sides of the p^+ poly-Si gate, and controls the underneath channel conductivity depending on the number of electron in it. The cell was programmed by hot-carrier-injection at the drain extension, and erased by direct tunneling. The proposed EEPROM cell can be scaled down to 50 nm or less. Shown were measured programming and erasing characteristics. The channel resistance with the write operation was increased by at least 3 times.

Ion Beam Induced Micro/Nano Fabrication: Modeling (이온빔을 이용한 마이크로/나노 가공: 모델링)

  • Kim, Heung-Bae;Hobler, Gerhard
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.108-115
    • /
    • 2007
  • 3D nano-scale manufacturing is an important aspect of advanced manufacturing technology. A key element in ability to view, fabricate, and in some cases operate micro-devices is the availability of tightly focused particle beams, particularly of photons, electrons, and ions. The use of ions is the only way to fabricate directly micro-/ nano-scale structures. It has been utilized as a direct-write method for lithography, implantation, and milling of functional devices. The simulation of ion beam induced physical and chemical phenomena based on sound mathematical models associated with simulation methods is presented for 3D micro-/nanofabrication. The results obtained from experimental investigation and characteristics of ion beam induced direct fabrication will be discussed.

진공용 나노 스테이지 개발을 위한 고찰

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.223-228
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modern products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of maskless fabrication. Therefore, the application of FIB technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few $\mu\;\textrm{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and 10nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about $1\times10^{-7}$ torr. This paper presents the concept of nano stages and the discussion of the material treatment for ultra high vacuum.

  • PDF