• Title/Summary/Keyword: Direct Vessel Injection

Search Result 42, Processing Time 0.027 seconds

THE CUPID CODE DEVELOPMENT AND ASSESSMENT STRATEGY

  • Jeong, J.J.;Yoon, H.Y.;Park, I.K.;Cho, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.636-655
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been being developed for the realistic analysis of transient two-phase flows in nuclear reactor components. The CUPID code development was motivated from very practical needs, including the analyses of a downcomer boiling, a two-phase flow mixing in a pool, and a two-phase flow in a direct vessel injection system. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations are solved over unstructured grids with a semi-implicit two-step method. This paper presents an overview of the CUPID code development and assessment strategy. It also presents the code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER.

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

Computational Study for the Performance of Fludic Device during LBLOCA using TRAC-M (최적계산코드를 이용한 대형 냉각재상실사고시 유량조절기 성능평가에 관한 연구)

  • Chon Woochong;Lee Jae Hoon;Lee Sang Jong
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • The APR1400 is an Advanced Pressurized Water Reactor with 3983 MWt power, 2×4 loops, and direct vessel injection system. The Fluidic Device (FD) is adopted to regulate the safety injection flow rate in a Safety Injection Tank (SIT) of APR1400. The performance of a newly designed fluidic Device is evaluated by analyzing a Large Break Loss-of-Coolant Accident (LBLOCA) using TRAC-M/F90, version 3.782. The analysis results show that the TRAC-M code reasonably predicts the important phenomena of blowdown, refill and reflood phases of LBLOCA. The sensitivity studies about gas/water volume changes in a SIT and K factor changes in a SI system were also done to understand the important phenomena with a Fluidic Device in APR1400.

Study on the Safety Analysis on the Cooling Performance of Hybrid SIT under the Station Blackout Accident (발전소 정전사고 시 Hybrid SIT의 냉각성능 평가를 위한 안전해석에 관한 연구)

  • Ryu, Sung Uk;Kim, Jae Min;Kim, Myoung Joon;Jeon, Woo Jin;Park, Hyun-Sik;Yi, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.64-70
    • /
    • 2017
  • The concept of Hybrid Safety Injection Tank (Hybrid SIT) proposed by the Korea Atomic Energy Research Institute (KAERI) has been introduced for the purpose of application to the Advanced Power Reactor Plus (APR+). In this study, the SBO situation of the APR+ was analyzed by using the MARS-KS code in order to evaluate whether the operation of the Hybrid SIT has an effect on the cooling performance of the Reactor Coolant System (RCS). According to the analysis, when the actuation valve on the pressure balancing line (PBL) is opened, the Hybrid SIT's pressure rises rapidly, forming equilibrium with the RCS pressure; subsequently, a flow is injected from the Hybrid SIT into the reactor vessel through the direct vessel injection (DVI) line. The analysis showed that it is possible to keep the core temperature below melting temperature during the operation of a Hybrid SIT.

Non-Viral Transgenesis via Direct In Ovo Lipofection in Quail (비바이러스 In Ovo 직접주입법에 의한 메추리 형질전환 시스템)

  • Park, Tae Sub;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.239-245
    • /
    • 2015
  • Transgenic animals have been widely used for developmental biology studies, as disease models, and even in industry such as transgenic bioreactor animals. For transgenic birds, quail has the great advantages of small body size, short generation time, and frequent egg production. To date, retroviral or lentiviral transduction has been used to generate transgenic quail for various purposes. However, the efficiency of transgenic offspring production with these methods is relatively low and viral vector usage has safety issues. Unfortunately, non-viral transgenesis has not been established in quail due to a deficiency of stem cell and germ cell culture systems. In this study, we established a direct in ovo lipofection method that could be used to create transgenic quail without germline-competent cells or viruses. To optimize the injection stage during embryo development, the liposome complex (containing piggyBacCMV-GFP and transposase plasmids) was introduced into an embryonic blood vessel at 50 hr, 55 hr or 60 hr. GFP expression was detected in various tissues (heart, kidney, liver and stomach) on day 12 of incubation under a fluorescence microscope. Additionally, GFP-positive cells were detected in the recipient embryonic gonads. In conclusion, the direct in ovo lipofection method with the piggyBac transposon could be an efficient and useful tool for generating transgenic quail.

Effect of DVI Nozzle Location on the Thermal Mixing in the RVDC (DVI 노즐 위치가 원자로 하향유로내의 냉각수 열적혼합에 미치는 영향 분석)

  • Kang Hyung Seok;Cho Bong Hyun;Kim Hwan Yeol;Yoon Juhyeon;Bae Yoon Yeong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.89-99
    • /
    • 1998
  • 한국형 차세대원자로에서는 비상노심 안전주입수가 저온관을 통하지 않고 원자로용기에 직접 주입된다. 원자로용기의 가압열충격과 열수력적 관점에서 최적의 노즐위치를 결정하기 위해서 전산유체역학을 활용하였다. 상용 전산유체코드인 CFX를 이용하여 원자로 하향유로를 모사하는 해석대상 격자를 다중불록으로 형성한 다음 유동장을 비압축성 Navier-Stokes 운동량 방정식, 에너지 방정식과 표준 k-ε 난류모형 등으로 모형화하여 3차원 비정상상태 계산을 수행하였다. CFX에서는 경계 밀착좌표계, 비엇물림격자와 SIMPLE 알고리즘을 사용한다. 본 연구결과 원자로용기의 가압열충격 관점에서 가장 보수적인 사고인 증기관 파단사고시에도 열적혼합이 잘 일어나 가압열충격이 발생할 가능성이 없는 것으로 판단되며 안전주입수 노즐이 저온관 바로 위에 위치할 때 원자로 하향유로 내의 온도 분포가 가장 균일하여 열적 혼합 관점에서는 최적의 위치로 판단된다.

  • PDF

Geometric distortion correction of fluorescein ocular fundus photographs (형광 안저 사진의 기하 왜곡 교정)

  • 권갑현;하영호;김수중
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.183-192
    • /
    • 1991
  • Ophthalmoscopy following the intravenous injection of fluorescein has gained great diagnostic importance in ophthalmology. This technique provides sequential evaluation of the anatomic and physiologic status of the choroidal and retinal vasculature. In order to detect the changes between fluorescein ocular fundus image frames, the direct subtraction of the two frames is inadequate because of geometric distortions and background gray level differences in two images. In this study, a scheme for the correction of the geometric distortions is proposed. Precise control point coordinate values for transformation functions are manually determined after the process including a series of blood vessel detection and thinning, and one frame is mapped to another, and then a geometric distortion corrected image is obtained. When the corrected image is used in interframe change detections, a sucessful result is ensured.

  • PDF

A SUMMARY OF 50th OECD/NEA/CSNI INTERNATIONAL STANDARD PROBLEM EXERCISE (ISP-50)

  • Choi, Ki-Yong;Baek, Won-Pil;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.561-586
    • /
    • 2012
  • This paper describes a summary of final prediction results by system-scale safety analysis codes during the OECD/NEA/CSNI ISP-50 exercise, targeting a 50% Direct Vessel Injection (DVI) line break integral effect test performed with the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS). This ISP-50 exercise has been performed in two consecutive phases: "blind" and "open" phases. Quantitative comparisons were performed using the Fast Fourier Transform Based Method (FFTBM) to compare the overall accuracy of the collected calculations. Great user effects resulting from the combination of the possible reasons were found in the blind phase, confirming that user effect is still one of the major issues in connection with the system thermal-hydraulic code application. Open calculations showed better prediction accuracy than the blind calculations in terms of average amplitude (AA) value. A total of nineteen organizations from eleven countries participated in this ISP-50 program and eight leading thermal-hydraulic system analysis codes were used: APROS, ATHLET, CATHARE, KORSAR, MARS-KS, RELAP5/MOD3.3, TECH-M-97, and TRACE.

Surgical Management Options for Trigeminal Neuralgia

  • Lunsford, L. Dade;Niranjan, Ajay;Kondziolka, Douglas
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.6
    • /
    • pp.359-366
    • /
    • 2007
  • Trigeminal neuralgia is a condition associated with severe episodic lancinating facial pain subject to remissions and relapses. Trigeminal neuralgia is often associated with blood vessel cross compression of the root entry zone or more rarely with demyelinating diseases and occasionally with direct compression by neoplasms of the posterior fossa. If initial medical management fails to control pain or is associated with unacceptable side effects, a variety of surgical procedures offer the hope for long-lasting pain relief or even cure. For patients who are healthy without significant medical co-morbidities, direct microsurgical vascular decompression [MVD] offers treatment that is often definitive. Other surgical options are effective for elderly patients not suitable for MVD. Percutaneous retrogasserian glycerol rhizotomy is a minimally invasive technique that is based on anatomic definition of the trigeminal cistern followed by injection of anhydrous glycerol to produce a weak neurolytic effect on the post-ganglionic fibers. Other percutaneous management strategies include radiofrequency rhizotomy and balloon compression. More recently, stereotactic radiosurgery has been used as a truly minimally invasive strategy. It also is anatomically based using high resolution MRI to define the retrogasserian target. Radiosurgery provides effective symptomatic relief in the vast majority of patients, especially those who have never had prior surgical procedures. For younger patients, we recommend microvascular decompression. For patients with severe exacerbations of their pain and who need rapid response to treatment, we suggest glycerol rhizotomy. For other patients, gamma knife radiosurgery represents an effective management strategy with excellent preservation of existing facial sensation.

AN EXPERIMENTAL STUDY WITH SNUF AND VALIDATION OF THE MARS CODE FOR A DVI LINE BREAK LOCA IN THE APR1400

  • Lee, Keo-Hyoung;Bae, Byoung-Uhn;Kim, Yong-Soo;Yun, Byong-Jo;Chun, Ji-Han;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.691-708
    • /
    • 2009
  • In order to analyze thermal hydraulic phenomena during a DVI (Direct Vessel Injection) line break LOCA (Loss-of-Coolant Accident) in the APR1400 (Advanced Power Reactor 1400 MWe), we performed experimental studies with the SNUF (Seoul National University Facility), a reduced-height and reduce-pressure integral test loop with a scaled down APR1400. We performed experiments dealing with eight test cases under varied tests. As a result of the experiment, the primary system pressure, the coolant temperature, and the occurrence time of the downcomer seal clearing were affected significantly by the thermal power in the core and the SI flow rate. The break area played a dominant role in the vent of the steam. For our analytical investigation, we used the MARS code for simulation of the experiments to validate the calculation capability of the code. The results of the analysis showed good and sufficient agreement with the results of the experiment. However, the analysis revealed a weak capability in predicting the bypass flow of the SI water toward the broken DVI line, and it was insufficient to simulate the streamline contraction in the broken side. We, hence, need to improve the MARS code.