• Title/Summary/Keyword: Direct Velocity Feedback

Search Result 38, Processing Time 0.021 seconds

A Cartesian Space Adaptive Control Scheme for Robot Manipulators (로봇 매니퓰레이터의 직교공간 적응제어 방식)

  • Hwang, Seok-Yong;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동 제어)

  • 강영규;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

Investigation into SINS/ANS Integrated Navigation System Based on Unscented Kalman Filtering

  • Ali, Jamshaid;Jiancheng, Fang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.241-245
    • /
    • 2005
  • Strapdown inertial navigation system (SINS) integrated with astronavigation system (ANS) yields reliable mission capability and enhanced navigational accuracy for spacecrafts. The theory and characteristics of integrated system based on unscented Kalman filtering is investigated in this paper. This Kalman filter structure uses unscented transform to approximate the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The filter implementation subsumed here is in a direct feedback mode. Axes misalignment angles of the SINS are observation to the filter. A simple approach for simulation of axes misalignment using stars observation is presented. The SINS error model required for the filtering algorithm is derived in space-stabilized mechanization. Simulation results of the integrated navigation system using a medium accuracy SINS demonstrates the validity of this method on improving the navigation system accuracy with the estimation and compensation for gyros drift, and the position and velocity errors that occur due to the axes misalignments.

  • PDF

Vibration suppression of rotating blade with piezocomposite materials (Piezocomposite 재료를 사용한 회전하는 블레이드의 진동억제)

  • Choi Seung-Chan;Kim Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.282-285
    • /
    • 2004
  • The main purpose of this study is the vibration suppression of rotating composite blade containing distributed piezoelectric sensors and actuators. The blade is modeled by thin-walled, single cell composite beam including the warping function, centrifugal force, Coriolis acceleration and piezoelectric effect. Further, the numerical study is performed m ing finite element method. The vibration of composite rotor is suppressed by piezocomposite actuators and PVDF sensors that are embedded between composite layers. A velocity feedback control algorithm coupling the direct and converse piezoelectric effect is used to actively control the' dynamic response of an integrated structure through a closed control loop. Responses of the rotating blade are investigated. Newmark time integration method is used to calculate the time response of the model. In the numerical simulation, the effect of parameters such as rotating speed, fiber orientation of the blade and size of actuators are studied in detail.

  • PDF

Active Control of Forced Vibrations in Smart Laminated Composite Plates Using Piezoceramics (압전세라믹을 이용한 지능 복합적층판의 강제진동의 능동제어)

  • 강영규;구근회;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.193-199
    • /
    • 2001
  • Active control of forced vibration of the cantilevered laminated composite plates using collocated piezoceramic sensor/actuator is analyzed numerically and verified experimentally for various fiber orientations. Impact on the stiffness and the damping properties is studied by varying stacking sequence of [$\theta$$_{4}$O$_{2}$90$_{2}$]s for the laminated composite plate. For the forced vibration control, the plate is excited by one pair of collocated PZT exciters in resonance and its vibrational response is suppressed by the other collocated PZT sensor/actuator using direct negative velocity feedback. It is shown that the active control of forced vibration is more effective for the smart laminated plate with higher modal damped stiffness(2ζ$\omega$/aup 2/) .

  • PDF

High speed and accurate positioning control of robot manipulator by using disturbance observer (외란 관측기를 이용한 직접 구동형 로봇의 고속.고정도 제어)

  • 서일홍;엄광식;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.948-951
    • /
    • 1996
  • High-speed/high-accuracy control of robot manipulator becomes more and more stringent because of the external disturbance and nonlinear characteristics. To meet this ends, lots of control strategies were proposed in the past such as the computed torque control, the nonlinear decoupled feedback control, and adaptive control. These control methods need computations of the inverse dynamics and require much computational effort. Recently, a disturbance observer with unmodeled robot dynamics and simple algorithms to motion control have been widely studied. This paper proposes a motor control strategy based on the disturbance observer which estimate the disturbance of each joint from input-output relationship of the actuator and eliminate the estimated disturbance including the torque due to modeling errors, coupling force, nonlinear friction, and so on. To apply the disturbance observer to closedloop system like velocity servo pack, the modified control structure was constructed and shown that it is equivalent to a disturbance observer in open-loop system. Finally, using the proposed approach, simulation and experiments were carried out for a two-degree-of-freedom SCARA type direct drive robot, and show some results to verify the effectiveness of the proposed algorithms.

  • PDF

Looking for Direct Evidence of Triggered Star Formation: Gas Kinematics

  • Lim, Beomdu;Sung, Hwankyung;Lee, Jae Joon;Oh, Heeyoung;Kim, Hwihyun;Hwang, Narae;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2016
  • Stellar wind and radiation pressure from massive stars can trigger the formation of new generation of stars. The sequential age distribution of stars, the morphology of cometary globules, and bright-rimmed clouds have been accepted as evidence of triggered star formation. However, these characteristics do not necessarily suggest that new generation of stars are formed by the feedback of massive stars. In order to search for any physical connection between star forming events, we have initiated a study of gas and stellar kinematics in NGC 1893, where two prominent cometary nebulae are facing toward O-type stars. The spectra of gas and stars in optical and near-infrared (NIR) wavelength are obtained with Hectochelle on the 6.5m MMT and Immersion GRating INfrared Spectrograph on the 2.7m Harlan J. Smith Telescope at McDonald observatory. In this study, the radial velocity field of gas across the cluster is investigated using $H{\alpha}$ and [N II] ${\lambda}$ 6584 emission lines, and that of the cometary nebula Sim 130 is also probed using 1-0 S(1) transition line of $H_2$. We report a distinctive velocity field of the cometary nebulae and many ro-vibrational transitions of $H_2$ even at high energy levels in the NIR spectra. These properties indicate the interaction between the cometary nebulae and O-type stars, and this fact can be a clue to triggered star formation in NGC 1893.

  • PDF

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.