• Title/Summary/Keyword: Direct Somatic Embryogenesis

Search Result 32, Processing Time 0.051 seconds

Effects of $CO_2$ Enrichment on the Differentiation and Growth in tissue culture of Panax ginseng C. A. Meyer (人參(인삼) 조직배양(組織培養)에 있어 $CO_2$ 처리(處理)가 식물체(植物體) 분화(分化) 및 생장(生長)에 미치는 영향(影響))

  • Chung, Chan-Moon;Bae, Kil-Kwan;Aoki, Masatoshi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.14-20
    • /
    • 2000
  • This experiment was conducted to investigate the effects of length of storage period under low temperature, $CO_2$ enrichment and addition of plant growth regulators in Murashige and Skoog medium on the plant regeneration of Korean ginseng (Panax ginseng C. A. Meyer). Seeds were treated for 60 and 80 days respectively under $5^{\circ}C$ environment. 2500ppm of $CO_2$ was enriched by ventilation. Three plant growth regulators added to the medium were Indolbutyric acid, Benzyladenin and Gibberellic acid (GA3). The result indicated that : The capacity of differentiation was higher in the aged cotyledons from the seeds treated for 80 days under low temperature condition than in those treated for 60 days. $CO_2$ enrichment had stimulating effects on the growth and development of shoot primordium significantly but less effects on the formation of adventitious buds. From one zygotic embryo hundreds of plantlets were differentiated. $CO_2$ enrichment had effects on the formation of both indirect somatic embryo and direct somatic embryo. Indirect somatic embryo showed little growth and differentiation, being undifferentiated vascular stele and epicotyl. Direct somatic embryos were formed on the epidermis of backside basal part of cotyledon. Those embryos developed to whole plant having latent bud.

  • PDF

In Vitro Propagation of Medicinal Herbs in Korea

  • An, Chanhoon;Song, Jeongho
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.77-81
    • /
    • 2018
  • Mass production of forest medicinal plants is related to quality control of raw medicinal materials. Plant tissue culture is an important technology to produce high-quality plant materials. Numerous factors are reported to influence the success of in vitro regeneration of medicinal plants. Embryogenesis is known to be the most effective techniques and it has developed in some medicinal plant species. Various in vitro cultural condition for direct and/or indirect somatic embryogenesis systems have developed in Epimedium koreaum, Bupleurum falcatum, Paeonia lactiflora, Chrysanthemum zawadskii, Houttuynia cordata etc. In this study, we provide the present statue and information of in vitro propagation techniques that is able to apply as an efficient system for rootstock propagation system of forest medicinal plants.

Effects of Growth Regulators on the Formation of Somatic Embryo and Adventitious Bud from the Cotyledon of Korean Ginseng (Panax ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A. Meyer)의 자엽으로부터 체세포배 및 부정아의 발생에 미치는 식물호르몬의 영향)

  • Yang Deok-Chun;Yoon Eui-Soo;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.199-204
    • /
    • 1999
  • Cotyledon explants of Korean ginseng (Panax ginseng C.A. Meyer), a perennial medicinal plant, produced direct somatic embryos at a high frequency on MS medium without growth regulators. Cytokinin highly suppressed the somatic embryogenesis but stimulated direct fomlation of adventitious buds. BAP was more effective than kinetin for the formation of adventitious bud. IBA combination with cytokinin enhanced the frequency of adventitious bud formation. The highest frequency of adventitious bud formation were $40\%$ at 0.05 mg/l IBA and 5 mg/l BAP. Adventitious buds were mainly formed near the distal portion of cotyledon, while somatic embryos were only formed near the proximal portion of cotyledon. Adventitious buds were covered with sheath similar to axillary buds in the zygotic embryos, and then leaf-like epicotyls were developed.

  • PDF

Effect of Plant Growth Regulators on Direct Shoots Formation and Somatic Embryogenesis from Leaf Tissue Culture of Muscari armeniacum 'Early Giant' (무스카리(Muscari armeniacum 'Early Giant') 엽절편 조직으로부터 신초형성과 체세포 배발생에 미치는 생장조절물질의 영향)

  • Jeon, Su-Min;Chung, Mi-Young;Lee, Hyang-Bun;Han, Jeung-Sul;Park, Jae Suk;Kim, Chang-Kil;Chung, Jae-Dong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.261-265
    • /
    • 2010
  • This experiment was carried out in order to determine proper plant growth regulators (PGR) and their concentrations for direct shoot induction and somatic embryogenesis from leaf tissue cultures of Muscari armeniacum 'Early Giant'. Direct shoot formation from the leaf explant culture was effective only on a half-strength MS medium containing $0.1mg{\cdot}L^{-1}$ 2,4-D, while embryogenesis was occurred on a half-strength MS medium containing $0.1{\sim}1.0mg{\cdot}L^{-1}$ IPA or without PGR. The regenerated bulblets derived from embryos or shoots were harvested and transplanted into a greenhouse. The sprouting percentage of bulblets obtained from different culture media ranged from 80 to 100% and growth of quality bulblets was enhanced when the bulblets were harvested from the medium containing $0.1mg{\cdot}L^{-1}$ NAA and $1.0{\sim}3.0mg{\cdot}L^{-1}$ IPA.

The Effects of Optimal Germination of Somatic Embryos Induced from Mature Cotyledon Explants of Panax ginseng C. A. Meyer by Gibberellic Acid (인삼 체세포 배 발아를 위한 $GA_3$의 최적 조건)

  • Kim, Young-Chang;Park, Hong-Woo;Kim, Ok-Tae;Bang, Kyong-Hwan;Hyun, Dong-Yun;Cha, Seon-Woo;Kim, Dong-Hwi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.238-242
    • /
    • 2009
  • Somatic embryos on growth regulator-free medium can be produced directly from cotyledon explants of Panax ginseng C. A. Meyer. When the embryo developmental stage was torpedo and cotyledon, the germination rate of embryos was quite high on MS medium supplemented with gibberellic acid ($GA_3$). However, the percentage of plantlet formation at the cotyledon stage was higher than that at the torpedo stage. This result demonstrates that the embryo at the cotyledon stage was the most appropriate for increasing germination by $GA_3$. Embryos cultured on medium including four levels of $GA_3$ concentrations (3, 5, 10, or 20 mg/$\ell$) showed all quite high germination rates (87-91%). When the well-developed embryos were continuously cultured on media including high concentrations of $GA_3$ from 10 to 20 mg/$\ell$, the percentage of formation of normal plantlets was lower than that seen under low concentrations from 3 to 5 mg/$\ell$. This treatment of high concentrations resulted in shoots with abnormal shape. The optimal $GA_3$ treatment provides a basis for the efficient method obtaining healthy plantlets derived from ginseng somatic embryos.

Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors

  • Bouamama-Gzara, Badra;Selmi, Ilhem;Chebil, Samir;Melki, Imene;Mliki, Ahmed;Ghorbel, Abdelwahed;Carra, Angela;Carimi, Francesco;Mahfoudhi, Naima
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.561-571
    • /
    • 2017
  • Prospecting of local grapevine (Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. 'Hencha' were successfully induced from filament, when cultured on $Ch{\acute{e}}e$and Pool (1987). based-medium, enriched with $2mg1^{-1}$ of 2,4-dichlorophenoxyacetic acid and $2.5mg1^{-1}$ of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPaV as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% 'Hencha' somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination.

Plant Regeneration of Bupleurum spp. through Somatic Tissue Culture (자호(紫胡)의 체세포조직배양(體細胞組織培養)에 의한 식물체재분화(植物體再分化))

  • Park, Cheol-Ho;Yu, Chang-Yeon;Kim, Dong-Wook;Cho, Hye-Kyeong;Park, Kyeong-Suk;Seo, Jeong-Sik;Ahn, Sang-Deuk;Jang, Byeong-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • This study was conducted to determine the optimum conditions of inducing callus, proliferating callus, forming somatic embryos, and regenerating plantlets via somatic embryogenesis, for the purpose of producing artificial seeds and substantially developing plant factory technologies that can be employed to all seasons production of Bupleurum plants. Callus was efficiently induced from leaf tissues at three leaf stage in the MS medium supplemented with 2, 4-D 2mg /1 and thidiazuron(TDZ) 0.lmg /1. Callus induction from leaf tissues at maturity was mostly effective in the mixture of 2,4- D 2mg /1 and TDZ 1.0mg /1 while that from flower bud tissues was fairly good in the MS medium containing 2,4-D 1 or 2mg /1.Callus was formed in 15 to 20 days after culture initiation in the MS media supplemented with 2, 4- D 1-2mg /1 and TDZ 0.l-1.0mg /1. Such hormones as kinetin 3mg /1, GA 1mg /1, and the mixture of GA 1mg /1 and TDZ 1mg /1 effected markedly to proliferate the callus cells.The optimum temperature and light intensity for callus culture were found to be $25^{\circ}C$ and 3000 Lux, respectively. Direct plant regeneration from cultured callus was fairly made on hormone-free MS or half-strength MS medium. Somatic embryogenesis was most frequently observed in hormone-free media:60 somatic embryos per 20ml in MS medium and 28 somatic embryos per 20ml in half -strength MS medium. There were three stages-globular, heart, and torpedo-in development of somatic embryos, among which globular stage was more frequently observed in MS medium rather than in half-strength MS medium. Somatic embryos induced from suspension culture fairly differentiated a number of shoots and roots on hormone-free and half-strength MS solid medium.

  • PDF

High Frequency Plant Regeneration from Leaf, Petiole and Internode Explants of Codonopsis lanceolata Benth.

  • Ghimire, Bimal Kumar;Shin, Chul-Min;Li, Cheng Hao;Kim, Na-Young;Chung, III-Min;Lim, Jung-Dae;Kim, Jae-Kwang;Kim, Myong-Jo;Cho, Dong-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.73-81
    • /
    • 2007
  • An efficient regeneration system was developed using leaf, petiole, and internode explants. Highly embryogenic callus was obtained following cultivation on MS basal nutrient supplemented with 2 $mg/{\ell}$ 2,4-D. Globular, heart, torpedo and cotyledon shaped somatic embryo were produced from the surface of embryogenic callus. Direct shoot regeneration without intermediate callus formation has been achieved on MS medium supplemented NAA and BAP. The percentage of response varies with different concentration of auxin and cytokinin treated individually or in combination. The best shoot regeneration response (54.28%) and number of shoot per explant (12.67) were achieved on the medium supplemented with 0.1 $mg/{\ell}$ NAA and 1 $mg/{\ell}$ BAP. The regenerated shoot transformed into young plant when cultured into elongation and root induction medium. More than 90% of in vitro propagated plants could survive when transferred to the greenhouse for acclimation. This optimized regeneration system can be used for rapid shoot proliferation and genetic transformation.

Development of PCR based approach to detect potential mosaicism in porcine embryos

  • Cho, Jongki;Uh, Kyungjun;Ryu, Junghyun;Fang, Xun;Bang, Seonggyu;Lee, Kiho
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.323-328
    • /
    • 2020
  • Direct injection of genome editing tools such as CRISPR/Cas9 system into developing embryos has been widely used to generate genetically engineered pigs. The approach allows us to produce pigs carrying targeted modifications at high efficiency without having to apply somatic cell nuclear transfer. However, the targeted modifications during embryogenesis often result in mosaicism, which causes issues in phenotyping founder animals and establishing a group of pigs carrying intended modifications. This study was aimed to establish a genomic PCR and sequencing system of a single blastomere in the four-cell embryos to detect potential mosaicism. We performed genomic PCR in four individual blastomeres from four-cell embryos. We successfully amplified target genomic region from single blastomeres of 4-cell stage embryo by PCR. Sanger sequencing of the PCR amplicons obtained from the blastomeres suggested that PCR-based genotyping of single blastomere was a feasible method to determine mutation type generated by genome editing technology such as CRISPR/Cas9 in early stage embryos. In conclusion, we successfully genotyped single blastomeres in a single 4-cell stage embryo to detect potential mosaicism in porcine embryos. Our approach offers a simple platform that can be used to screen the prevalence of mosaicism from designed CRISPR/Cas9 systems.