A new efficient numerical method for computing three-dimensional, unsteady, incompressible flows is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used for both the diffusion and convection terms, is adopted. Based on an approximate block LU decomposition method, the velocity -pressure decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully -implicit time advancement scheme. Since the iterative procedures for the momentum equations are not required, the velocity components decouplings bring forth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to minimal channel flow unit with DNS (Direct Numerical Simulation).
This paper introduces a numerical method for integration of the linear and nonlinear differential dynamic equation of motion. The variation of acceleration in two time steps is approximated as a combination of both trigonometric cosine and hyperbolic cosine functions with weighted coefficient. From which all necessary formulae are elaborated for the direct integration of the governing equation. A number of linear and nonlinear dynamic problems with various degrees of freedom are analysed using both the suggested method and Newmark method for the comparison. The numerical results show high advantages and effectiveness of the new method.
The Gauss-Legendre integral method is applied to numerically evaluate the Green function and its derivatives in finite water depth. In this method, the singular point of the function in the traditional integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. Using this new methodology, the Green function with the field and source points near the water surface can be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new method is investigated. The numerical results using a Gauss-Legendre integral method show good agreements with other numerical results of direct calculations and series form in the far field. Furthermore, the cases with the field and source points near the water surface are also considered. Considering the computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain the accurate numerical results of the Green function and its derivatives in finite water depth and can be adopted in the near field.
The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.
The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.
The Direct Metal Prototyping(DMP), one of the rapid prototyping technologies, allows the manufacturing of three-dimensional metallic parts using metal powders directly from the CAD data. Laser power and scanning speed are the most important variables of the process. The objective of this study is to obtain the design data for laser power and scanning speed to bond metal powders effectively using the finite element method. To obtain the design values, a numerical analysis considering two-dimensional heat transfer during the sintering of metal powder layers of the process was performed. The laser beam has been modeled to have directionality in its heat flux distribution, i. e., in the scanning direction a Gaussian beam mode distribution has been assumed and in the thickness direction a square beam mode distribution. The three-dimensional irregular distribution of metal powders of the powder layer is idealized as two-dimensional distribution in which metal powders are located regularly and periodically on the plate. In this study the design values of laser power vs scanning speed have been obtained. Temperature distribution and temperature variation of the powder layers with respect to time have been predicted. The commputed dsign data will be useful in determining the initial conditions of the process.
In this paper, we first provide comparison results of preconditioned AOR methods with direct preconditioners $I+{\beta}L$, $I+{\beta}U$ and $I+{\beta}(L+U)$ for solving a linear system whose coefficient matrix is a large sparse irreducible L-matrix, where ${\beta}$ > 0. Next we propose how to find a near optimal parameter ${\beta}$ for which Krylov subspace method with these direct preconditioners performs nearly best. Lastly numerical experiments are provided to compare the performance of preconditioned iterative methods and to illustrate the theoretical results.
Direct numerical simulation of bubble growth and merger process on a single nucleation site during partial nucleate boiling is performed. The equations governing conservation of mass, momentum and energy are solved using a finite difference method combined with a level set method for capturing the vapor-liquid interface. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall. Also, a simplified formulation for predicting the evaporative heat flux in a thin liquid micro-layer is developed and incorporated into the level set formulation. Based on the numerical results, the bubble growth and merger pattern and its effect on the heat transfer are discussed.
본 연구에서는 하수관 손상에 의한 지반함몰 발생 과정에서 지반의 포화도 상승에 따른 흙의 불포화 강도 저하의 영향을 파악하기 위하여, 직접 전단 실험, 모형 실험, 그리고 수치해석을 수행하였다. 직접 전단 시험 결과, 흙의 마찰각은 포화도의 영향을 크게 받지 않으나, 점착력은 포화도의 영향을 크게 받음을 알 수 있다. 포화도 상승에 따른 강도저하의 영향만을 고려하기 위하여, 물의 침투효과를 배제한 모형 실험을 실시하여 지반 함몰 현상을 재현하였다. 지반 함몰은 대변위를 동반하며, 기존 유한요소법의 적용이 어렵다. 본 연구에서는 대변위 해석 기법인 일반 보간 재료점법을 사용하여 수행한 모형실험을 수치적으로 모사하였다. 비록 경계 조건 차이, 불완전 포화, 손상부 연결관의 폐색등에 의해 함몰 시간 등에는 차이가 있었지만, 유사한 토체의 변형 거동이 모형 실험과 수치해석에서 발견되었다.
Steepest Descent Method를 정전계 문제의 해석에 적용하였다. 반복법과 moment method와 같은 direct method와의 차이점을 기술하였다. 반복법을 이용하여 정확한 해에 단조적으로 수렴하며 대형 system의 해석에 적합함을 보였다. 정전계 문제에 대해서 해석한 수치결과를 제시하였으며 moment solution과 잘 일치하고 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.