• Title/Summary/Keyword: Direct Loss

Search Result 907, Processing Time 0.029 seconds

A Micromachined Two-state Bandpass Filter using Series Inductors and MEMS Switches for WLAN Applications

  • Kim, Jong-Man;Lee, Sang-Hyo;Park, Jae-Hyoung;Kim, Jung-Mu;Baek, Chang-Wook;Kwon, Young-Woo;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.300-306
    • /
    • 2004
  • This paper reports a novel tunable bandpass filter using two-state switched inductor with direct-contact MEMS switches for wireless LAN applications. In our filter configuration, the switched inductor is implemented to obtain more stable and much larger frequency tuning ratio compared with variable capacitor-based tunable filter. The proposed tunable filter was fabricated using a micromachining technology and electrical performances of the fabricated filter were measured. The filter consists of spiral inductors, MIM capacitors and direct-contact type MEMS switches, and its frequency tunability is achieved by changing the inductance that is induced by ON/OFF actuations of the MEMS switches. The actuation voltage of the MEMS switches was measured of 58 V, and they showed the insertion loss of 0.1 dB and isolation of 26.3 dB at 2 GHz, respectively. The measured center frequencies of the fabricated filter were 2.55 GHz and 5.1 GHz, respectively. The passband insertion loss and 3-dB bandwidth were 4.2 dB and 22.5 % at 2.55 GHz, and 5.2 dB and 23.5 % at 5.1 GHz, respectively.

Design and fabrication of power detector for multi-band six-port direct conversion method (다중대역 6단자 직접변환 방식을 위한 전력 검파기 설계 및 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2194-2200
    • /
    • 2010
  • In this paper, the power detectors using metamaterials were designed and fabricated for multi-band six-port direct conversion method. The RF short-stubs for power detector were designed by using metamaterials which provide multi-band characteristics. The power detectors with metamaterial RF short-stub were analyzed and fabricated by using lumped and distributed element. The measured results of metamaterial power detectors show the good agreement with the simulation results. The performance of lumped-metamaterial RF short-stub shows the insertion loss below 1 dB and the good frequency response characteristics. Also, the distributed-metamaterial RF short-stub shows the good frequency response characteristics and the insertion loss under that of lumped-metamaterial RF short-stub. The multi-band power detectors with metamaterial RF short-stub detect the input RF signal in the designed dual frequency bands very well.

Characterization of Methanol Crossover through Nafion Membranes by Direct Cell Performance Measurement

  • Park, Kyung-Won;Kim, Young-Min;Kwon, Bu-kil;Choi, Jong-Ho;Park, In-Su;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.226-231
    • /
    • 2002
  • Power densities produced by the permeation of methanol through membranes were directly measured by inserting the membrane in front of anode in a membrane-electrode-assembly of a direct methanol fuel cell (DMFC). The power density was closely related to the loss of power in the DMFC and was strongly affected by temperature. As the cell temperature was increased, the power density resulting from methanol crossover was increased. The increase in methanol crossover had be attributed to diffusion caused or affected by temperature. Methanol crossover a major effect on the performance of a DMFC at a relatively low temperature with $26\%\;loss\;at\;30^{\circ}C$. In order to reduce methanol crossover, a conventional Nafion membrane was modified by the incorporation of Pt or Pd. The reduction in methanol crossover was investigated in these modified membranes by our cell performance measurement. Pt and Pd particles incorporated in the Nafion membranes block methanol pathway and prevent methanol transport through the membranes, which was proved by combining with liquid chromatography.

A Comparative Study of Bipolar Hemiarthroplasty for Intertrochanteric Fracture: Direct Anterior Approach versus Conventional Posterolateral Approach

  • Young Yool Chung;Seung-Woo Shim;Min Young Kim;Young-Jae Kim
    • Hip & pelvis
    • /
    • v.35 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • Purpose: The aim of this study was to compare short-term results from use of the direct anterior approach (DAA) and the conventional posterolateral approach (PLA) in performance of bipolar hemiarthroplasty for treatment of femoral intertrochanteric fractures in elderly patients. Materials and Methods: A retrospective review of 100 patients with intertrochanteric fractures who underwent bipolar hemiarthroplasty was conducted. The PLA was used in 50 cases from 2016 to 2019; since that time we have used the DAA in 50 cases from 2019 to 2021. Measurements of mean operative time, blood loss, hospitalization period, and ambulation status, greater trochanter (GT) migration and stem subsidence were performed. And the incidence of complications was examined. Results: Operative time was 73.60±14.56 minutes in the PLA group and 79.80±8.89 minutes in the DAA group (P<0.05). However, after experiencing 20 cases using DAA, there was no statistically difference in operative time between two groups (P=0.331). Blood loss was 380.76±180.67 mL in the PLA group and 318.14± 138.51 mL in the DAA group (P<0.05). The hospitalization was 23.76±11.89 days in the PLA group and 21.45 ±4.18 days in the DAA group (P=0.207). In both groups, there were no progressive GT migration, intraoperative fractures or dislocations, although there was one case of infection in the PLA group. Conclusion: Although use of the DAA in performance of bipolar hemiarthroplasty required slightly more time in the beginning compared with the PLA, the DAA may well be an alternative, safe surgical technique as a muscle preserving procedure in elderly patients with intertrochanteric fractures.

Vibrational Relaxation and Bond Dissociation of Excited Methylpyrazine in the Collision with HF

  • Oh, Hee-Gyun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1641-1647
    • /
    • 2006
  • Vibrational relaxation and competitive C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited methylpyrazine in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited methylpyrazine upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm^{-1}$. Above the energy content of 45,000 $cm^{-1}$, however, energy loss decreases. The temperature dependence of energy loss is negligible between 200 and 400 K, but above 45,000 $cm^{-1}$ the energy loss increases as the temperature is raised. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF, that is, relatively large amount of translational energy is transferred in a single step. On the other hand, energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content ET of methylpyrazine is sufficiently high, either or both C-H bonds can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the direct intermolecular energy flow from the direct collision between the ring C-H and HF but the result of the intramolecular flow of energy from the methyl group to the ring C-H stretch.

DNS STUDY ON THE FLOW CHARACTERISTICS THROUGH SIMPLE POROUS HYDRAULIC FRACTURES (평판형 수압파쇄 균열을 통과하는 다공질유동 특성에 관한 DNS 해석 연구)

  • Shin, C.H.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2016
  • The flow analyses through a porous hydraulic fractures is among the most important tasks in recently developed shale reservoirs but is rendered difficult by non-Darcy effects and geometric changes in the hydraulic fractures during production. In this study, several Computational Fluid Dynamics(CFD) models of hydraulic fractures, with a simple shape such as that of parallel plates, filled with proppants were built. Direct Numerical Simulation(DNS) analyses were then carried out to examine the flow loss characteristics of the fractures. The hydraulic diameters for the simulation models were calculated using the DNS results, and then they were compared with the results from Kozeny's definition of hydraulic diameter which is most widely used in the flow analysis field. Also, the characteristic parameters based on both hydraulic diameters were estimated for the investigation of the flow loss variation features. Consequently, it was checked in this study that the hydraulic diameter based on Kozeny's definition is not accordant to the results from the DNS analyses, and the case using the CFD results exhibits f Re robustness like general pipe flows, whereas the other case using Kozeny's definition doesn't. Ultimately, it is expected that discoveries reported in this study would help further porous flow analyses such as hydraulic fracture flows.

Improvement of a Rice Seed Pelleting Machine for Direct Seeding in Rice Cultivation(I) - Construction and its performance - (직파용 벼 펠렛종자 제조장치 개선 연구(I) - 장치 제작과 성능분석 -)

  • 유대성;유수남;최영수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.403-410
    • /
    • 2003
  • To enhance the performance of a rice seed pelleting machine and the quality of rice-seed pellets made, improvement of the rice seed pelleting machine developed previously(Park, 2002) was tried and its performance was evaluated. As compared with the previous pelleting machine, a feeding mechanism of pellet materials to the forming rolls was changed from screw conveyor to hydraulic cylinder for proper feeding, rings were installed among rows of semi-spherical forming grooves on the forming rolls for reducing pellet materials loss and seeds damage, and discharging air nozzles were added for complete discharging of the pellets made. Through performance tests, capacity, pelleting ratio, and seed loss ratio of the pelleting machine were investigated at the mixing ratios of soil to rice seed of 6 : 1, 7 : 1, and 8 : 1, and rotating speeds of the forming rolls of 7 rpm, 10 rpm, and 13 rpm. As results of performance evaluation, pelleting ratios were in the range of 77 ∼ 89 %, and maximum pelleting ratio increased by 18 % in comparison with that of the previous machine. Maximum capacity was about 110 kg/h(about 63,000 pellets/h), which was increased by 70 % in comparison with that of the previous machine. But, ratios of seed loss were in the range of 24 - 49 %, which were not improved.

Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows (난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책)

  • Kim, Tae-Yun;Suh, Yong-Sug;Park, Hyeon-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems (역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계)

  • Ham, Y.B.;Kim, Y.;Noh, J.H.;Shin, S.S.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.