• Title/Summary/Keyword: Direct Injection Engine

Search Result 449, Processing Time 0.025 seconds

R&D on Thermal, Fluid, and Environmental Engineering Technology in KIMM (한국기계연구원의 열유체환경기술 개발현황)

  • Kim, Seock-Joan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.17-24
    • /
    • 2001
  • To solve the problems of energy and environment conservation issued recently, mainly in mechanical engineering point of view, R&D's on the thermal, fluid and environmental engineering technology have been carried out by two R&D departments in the Korea Institute of Machinery & Materials (KIMM). Now there are 65 researchers in the two. The representative projects in the field of thermal and fluid engineering are development of an inactive gas generator and development of a cryogenic cooler for electronic sensors. Pyrolysis and melting of wastes, gas treatment using nonthermal plasma, and desalination are important technology to be developed in environmental R&D areas. To reduce the emission from the existing diesel engines for buses, an LPG direct injection type of bus engine is being developed supported by LPG supply companies. These several R&D projects which have been carried out in KIMM are introduced briefly.

  • PDF

A Numerical Study on Stratified Charge Formation and Combustion Processes (성층급기 연소현상에 관한 수치적 연구)

  • Lee, Suk-Young;Huh, Kang-Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.86-96
    • /
    • 2007
  • A direct-injection stratified-charge(DISC) engine has been considered as a promising alternative in spite of high unburned hydrocarbon emission levels during light load operation. In this paper investigation is made to characterize formation and combustion processes of stratified mixture charge in a simple constant volume combustion chamber. Both experimental and numerical analyses are performed for fluid and combustion characteristics with 3 different induction types for rich, homogeneous and lean mixture conditions. The commercial code FIRE is applied to the turbulent combustion process in terms of measured and calculated pressure traces and calculated distributions of mean temperature, OH radical and reaction rate. It turns out that the highest combustion rate occurs for the rich state condition at the spark ignition location due to existence of stoichiometric mixture and timing.

Development of Real-time Diagnostic Monitering System and the OBD-II Protocol for Industrial CRDI Engine (산업용 CRDI 엔진을 위한 OBD-II 프로토콜 및 실시간 진단 모니터링 시스템 개발)

  • Jang, Sung-jin;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.355-358
    • /
    • 2015
  • 산업용 CRDI 엔진에서 센서의 정보를 분석하여 최적의 조건으로 엔진이 동작하도록 하기 위해 산업용 CRDI 시스템에 적합한 OBD-II 프로토콜을 설계하고 ECU의 센서 정보를 전문가 아닌 일반 사용자가 내용을 이해하기 쉽도록 사용자 중심의 진단기의 개발이 필요하다. 따라서, 본 연구에서는 자동차 고장진단 신호 및 센서 출력 신호를 유선시스템과 무선 시스템인 블루투스 모듈을 이용하여 실시간 통신이 제공 될 수 있는 OBD-II 진단기 S/W를 설계 및 구현하였다. 엔진이상으로 인한 사고의 예방이 가능하고, 최적의 조건으로 엔진이 동작하므로 과도한 배기가스 배출이나 불완전 연소가스 배출과 같은 대기환경오염을 예방할 수 있다.

  • PDF

An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine (헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구)

  • 김봉곤;하종률;권순석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

Implement of CRDI Engine Diagnostic System using the OBD-II (OBD-II를 이용한 CRDI 엔진 진단 시스템 구현)

  • Kim, Hwa-seon;Jang, Seong-jin;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.459-462
    • /
    • 2013
  • CRDI 시스템에서의 ECU는 센서의 정보를 분석하여 최적의 조건으로 엔진이 동작하도록 한다. 이러한 ECU의 프로그램 부분과 데이터 부분은 제작자에서만 변경할 수 있어 엔진을 진단하는 진단기의 경우 전문가가 아니면 사용하거나 내용을 이해하기가 쉽지 않다. 본 연구에서는 산업용 차량의 엔진 데이터 값을 OBD-II표준을 사용하여 입력받아 사용자 중심의 진단기를 PC 및 모바일용으로 개발하였다. 본 연구의 진단기는 운전자 중심의 진단 서비스를 제공하며, 자동차 고장진단 신호 및 센서 출력 신호를 유선시스템과 무선 시스템인 블루투스 모듈을 이용하여 실시간 통신이 제공되도록 함으로써 엔진이상으로 인한 사고의 예방이 가능하고, 최적의 조건으로 엔진이 동작하므로 과도한 배기가스 배출이나 불완전 연소가스 배출과 같은 대기환경오염을 예방할 수 있어 최근 대두되고 있는 에코산업에도 이바지 할 수 있을 것이다.

  • PDF

Modeling of Spray-Wall Interactions Considering Liquid Film Formation (액막형성을 고려한 분무-벽 상호작용에 대한 모델)

  • Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.1010-1019
    • /
    • 2000
  • The main purpose of this article is to propose and assess a new spray impingement model considering film formation, which is capable of describing the droplet distribution and film flows in direct injection diesel engines. The spray-wall interaction model includes several mathematical formulae, newly made by the energy conservation law and some experimental results. The model consists of three representative regimes, rebound, deposition and splash. In addition, the film flow is described in the present model by solving the continuity and momentum equations for film flows using the integral method. To assess the new spray impingement model, the calculated results using the new model are compared with several experimental data for the normally impinging diesel sprays. The film model is also validated through comparing film radius and thickness against experimental data. The results show that the new model is generally in better agreement with experimental data and acceptable for prediction of the film radius and thickness.

Development of system for Trouble Diagnostic of Industrial CRDI Engine (산업용 CRDI 엔진 고장진단을 위한 시스템 개발)

  • Kim, Hwa-seon;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.458-461
    • /
    • 2014
  • CRDI 시스템에서의 ECU는 센서의 정보를 분석하여 최적의 조건으로 엔진이 동작하도록 한다. 이러한 ECU의 프로그램 부분과 데이터 부분은 제작자에서만 변경할 수 있어 엔진을 진단하는 진단기의 경우 전문가가 아니면 사용하거나 내용을 이해하기가 쉽지 않다. 본 연구에서는 산업용 차량의 엔진 데이터 값을 OBD-II 표준을 사용하여 입력받아 사용자 중심의 진단기를 PC 및 모바일용으로 개발하였다. 본 연구의 진단기는 운전자 중심의 진단 서비스를 제공하며, 자동차 고장진단 신호 및 센서 출력 신호를 유선시스템과 무선 시스템인 블루투스 모듈을 이용하여 실시간 통신이 제공되도록 함으로써 엔진이상으로 인한 사고의 예방이 가능하고, 최적의 조건으로 엔진이 동작하므로 과도한 배기가스 배출이나 불완전 연소가스 배출과 같은 대기환경오염을 예방할 수 있어 최근 대두되고 있는 에코산업에도 이바지 할 수 있을 것이다.

  • PDF

The Effects of Hydrogen on DME HCCI Combustion (DME 예혼합 압축착화 엔진에서 수소의 영향)

  • Baek, Cheul-Woo;Yoon, Hyeon-Sook;Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • The aim of this paper is controlling ignition timing and load in homogeneous charge compression ignition (HCCI) combustion with low cetane number fuel, hydrogen. Homogeneous charge compression ignition (HCCI) combustion is an advanced combustion technology that achieves higher thermal efficiency and lower $NO_x$ emissions than that of conventional combustion system. Dimethyl ether (DME), which has been researched widely as the most attractive alternative fuel of diesel, is attractive for HCCI combustion because of the easy evaporation. In this study, the single cylinder DME engine operated with a direct injection system has been used to investigate combustion processes and emissions of DME HCCI with a premixed hydrogen supply. The experiment was carried out under various engine speed and fraction rates of hydrogen. As a result, the increase of fraction rates of hydrogen retard the DME ignition timing and eliminated the knocking during high engine speed condition. IMEP was increased with increase of fraction rates of hydrogen by 30%. 40% of the fraction rates of hydrogen resulted in misfiring. The $NO_x$ emission was reduced by increasing the fraction rates of hydrogen, but HC emission was increased.

Improvement in Reduction Performance of LNT-Catalyst System with Micro-Reformer in Diesel Engine (연료 개질장치의 적용에 따른 디젤 LNT 환원성능 개선 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.689-696
    • /
    • 2010
  • The Because of its high thermal efficiency, the direct injection (DI) diesel engine has emerged as a promising potential candidate in the field of transportation. However, the amount of nitrogen oxides ($NO_x$) increases in the local high-temperature regions and that of particulate matter (PM) increases in the diffusion flame region during diesel combustion. In the de-$NO_x$ system the Lean $NO_x$ Trap (LNT) catalyst is used, which absorbs $NO_x$ under lean exhaust gas conditions and releases it in rich conditions. This technology can provide a high $NO_x$-conversion efficiency, but the right amount of reducing agent should be supplied to the catalytic converter at the right time. In this research, the emission characteristics of a diesel engine equipped with a micro-reformer that acts as a reductants-supplying equipment were investigated using an LNT system, and the effects of the exhaust-gas temperature were also studied.

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로)

  • Lim, J.K.;Choe, S.Y.;Cho, S.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF