• 제목/요약/키워드: Direct Injection Engine

검색결과 449건 처리시간 0.027초

가솔린 직분사 엔진에서 운전 조건에 따른 공기 유동 특성에 의한 분무 거동 및 점화 채널에 관한 연구 (Study on Behavior of Spray and Spark Channel by Air Flow Characteristics According to Operating Conditions in Gasoline Direct Injection Engine)

  • 이호승;박성욱
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.198-206
    • /
    • 2023
  • In this study, visualization of in-cylinder spray behavior and spark channel stretching by air flow characteristics depending on engine operating conditions were investigated. For in-cylinder spray behavior, increase in engine rpm did not alter the counter-clockwise air flow direction and location of in-cylinder dominant air flow but increased average air flow velocity, which hindered spray propagation parallel to the piston surface. When injection timing was retarded, direction of in-cylinder dominant air flow was changed, and average air flow velocity was reduced resulting in an increase in spray penetration length and change in direction. For spark channel stretching, increase in air flow speed did not affect spark channel stretch direction but affected length due to increase in spark channel resistance and limitation of energy ignition coil can handle. Change in air flow direction affected spark channel stretch direction where the air flow was obstructed by ground electrode which caused spark channel direction to occur in the opposing direction of air flow. It also affected spark channel stretch length due to change in air flow speed around the spark plug electrode from the interaction between the air flow and ground electrode.

커먼레일 고압분사 시스템 수치 시뮬레이션 (Simulation of High Pressure Common-rail Fuel Injection System)

  • 김홍열;구자예;나형규;김창수
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.162-173
    • /
    • 1998
  • The high pressure common rail injection system offers a high potential for improving emmisions and performance characteristics in large direct diesel engines. High pressures in the common rail with electronic control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine rpm and load conditions. In this study, high pressure supply pump, common rail, pipes, solenoid and control chamber, and nozzle were modeled in order to predict needle lift, rate of injection, and total injected fuel quantity. When the common rail pressure is raised up to 13.0 ㎫ and the targer injection duration is 1.0ms, the pressure drop in common rail is about 5.0㎫. The angle of effective pressurization is necessary to be optimized for the minimum pump drive torque and high pressure in common rail depending on the operating conditions. The characteristics of injection were also greatly influenced by the pressures in common rail, the areas of the inlet and exit orifice of the control chamber.

  • PDF

HSDI 커먼레일 인젝터 동적 모델 및 분사율 추정 (Dynamic Model of an HSDI Common-rail Injector and Injection Rate Estimation)

  • 남기훈;박승범;선우명호
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.43-49
    • /
    • 2003
  • The common-rail fuel injection system is becoming a common technology for High Speed Direct Injection(HSDI) diesel engines. The injection timing and rate are important factors for combustion control and pollutants formation mechanisms during engine operation. This paper introduces an estimation methodology of the injection timing and rate of a common-rail injector for HSDI diesel engines. A sliding mode observer that is based on the nonlinear mathematical model of the common-rail injector is designed to overcome the model uncertainties. The injector model and the estimator we verified by relevant injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection rate of the common-rail injector.

협각 인젝터를 이용한 예혼합 압축착화 연소에서의 디젤 노킹 가시화 (Diesel Knock Visualization of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle)

  • 박성산;정용진;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.101-104
    • /
    • 2012
  • In this work, in-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single cylinder diesel engine with premixed charge compression ignition combustion and a narrow injection angle. The results show that the frequency ranges of pressure ringing were 8.35 to 9 kHz and 12..2 to 13.1 kHz. The frequencies of the flame movement were shown as 8.7 kHz and 13 kHz. It was found that there is a direct relationship between the pressure ringing and the flame movement.

  • PDF

직분식 가솔린 기관 고압 인젝터의 연료 무화 특성 (Spray Characteristics of High-Pressure Injector in Direct-Injection Gasoline Engine)

  • 이창식;최수천;김민규
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.1-6
    • /
    • 1999
  • An experimental study was carried out to investigate the global spray behavior and spray characteristics of high-pressure fuel injector in the direct-injection goasoline enginet. The atomization characteristics of fuel spary such as mean droplet size, mean velocity , and velocity distribution were measured by the phase Doppler particle analyzer. The spray tip penetration and spray width were investigated by the result fo visualizaiton experiment. The quantitiative spary characteristics of injector spray were measured under various sparay conditions and ambient pressures. The results of experiment show that the increase in ambient pressure have influence on the spray tip penetration and spray development process. Also, the influence of injection pressure and measuring location on the mean velocity and droplet size distribution were discussed.

  • PDF

가솔린 인젝터의 연료 분무 미립화 특성에 미치는 분사 압력의 영향 (Effect of Injection Pressure on Atomization Characteristics of Fuel Spray in High-Pressure Gasoline Injector)

  • 이창식;최수천;김민규;권상일
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.555-560
    • /
    • 2000
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDl engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능 (Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine)

  • 박철웅;김창기;최영;강건용
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

DIESEL ENGINE NOx REDUCTION BY SNCR UNDER SIMULATED FLOW REACTOR CONDITIONS

  • Nam, Chang-Mo;Kwon, Gi-Hong;Mok, Young-Sun
    • Environmental Engineering Research
    • /
    • 제11권3호
    • /
    • pp.149-155
    • /
    • 2006
  • NOx reduction experiments were conducted by direct injection of urea into a diesel fueled, combustion-driven flow reactor which simulated a single engine cylinder ($966cm^3$). NOx reduction tests were carried out over a wide range of air/fuel ratios (A/F=20-40) using an initial NOx level of 530ppm, and for normalized stoichiometric ratios of reductant to NOx (NSR) of 1.5 to 4.0. The results show that effective NOx reduction with urea occurred over an injection temperature range of 1100 to 1350K. NOx reduction increased with increasing NSR values, and about a 40%-60% reduction of NOx was achieved with NSR=1.5-4.0. Most of the NOx reduction occurred within the cylinder and head section (residence time <40msec), since temperatures in the exhaust pipe were too low for additional NOx reduction. Relatively low NOx reduction is believed to be due to the existence of higher levels of CO and unburned hydrocarbons (UHC)inside the cylinder, and large temperature drops along the reactor. Injection of secondary combustible additives (diesel fuel/$C_2H_6$) into the exhaust pipe promoted further substantial NOx reduction (5%-30%) without shifting the temperature windows. Diesel fuel was found to enhance NOx reduction more than $C_2H_6$, and finally practical implications are further discussed.

CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기 (Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

GDI 엔진 인젝터의 연료 분무 거동 및 액적 분포 특성 (Spray Behaviors and Characteristics of Droplet Distribution in GDI injector)

  • 김민규;이창식;이기형;진 다시앙
    • 한국분무공학회지
    • /
    • 제6권2호
    • /
    • pp.16-21
    • /
    • 2001
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline swirl injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplets were measured by the phase Doppler particle analyzer system. The macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 7 and 10 MPa of injection pressure under different spray cone angle. The results of this work show that the geometry of injector was more dominant over the macroscopic characteristics of spray than the fuel injection pressure and injection duration. As for the atomization characteristics, the increase of injection pressure resulted in the decrease of fuel droplet diameter and the atomization characteristics differed as to the spray cone angle. The most droplets had under $25{\mu}m$ diameter and for the large droplets(upper $40{\mu}m$) as the spray grew the atomization presses were very slow. Comparison results between the measured droplet distribution and the droplet distribution functions revealed that the measured droplet distribution is very closed to the Normal distribution function and Nukiyama-Tanasawa's function.

  • PDF