• 제목/요약/키워드: Direct Diffusion

검색결과 293건 처리시간 0.026초

동축류 확산화염에서 다양한 연료에 따른 PAH 및 매연의 생성특성 (Characteristics of PAH and Soot Formation for Various Fuels in Coflow Diffusion Flame)

  • 윤승석;안형노;이상민;정석호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.107-110
    • /
    • 2003
  • Characteristics of PAH and soot formation in coflow diffusion flames of methane, methane, propane, and ethylene have been experimentally studied to investigate the temperature and fuel structure effect on soot formation. PAH and soot images were acquired by applying PAH LIF and LII techniques, respectively and temperature was measured using R-type thermocouple. Direct photographs of soot particles have also been taken by transmission electron microscopy (TEM) through a thermophoretic sampling. Comparison of PAH and soot formation between the aliphatic fuels has shown the importance of fuel structure effect in diffusion flames.

  • PDF

Radial and Circumferential Variations in Hygroscopicity and Diffusion Coefficients within a Tree Disk

  • Kang, Wook;Chung, Woo Yang;Eom, Chang Deuk;Han, Yeon Jung;Yeo, Hwan Myeong;Jung, Hee Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.29-38
    • /
    • 2007
  • This study was undertaken to investigate the variation of equilibrium moisture content (EMC) in transverse direction and three different directional (longitudinal, radial, and tangential) linear movements, and diffusion coefficients within a tree disc of Korean red pine (pinus densiflora). The EMC gradually increased in heartwood from pith. Therefore, the chemical components might differ even in heartwood and the radial variation in EMC might have a close relationship with the cellulose content within a cross section. The specific gravity increases gradually from pith and the porosity has not direct influence on the variation of EMC within a tree disk. Both the radial and tangential diffusion coefficients exhibited clear trend of increase from pith. The EMC change (${\Delta}EMC$) and tangential diffusion coefficient were close to be axisymmetrical but others were deviated from axisymmetry. The diffusion coefficient decreases with decreasing an activation energy and specific gravity, The diffusion coefficient increased with increasing ${\Delta}EMC$ and hygroscopicity of wood might be inversely proportional to the activation energy, The fJEMC may depend on the chemical constituents of cellulose, hemicellulose and lignin. As the number of sorption sites and sorption capacity of wood increase, therefore, it might be assumed that the hygroscopicity of wood increases while activation energy decreases. Modeling physico-mechanical behavior of wood, the variations should be considered to improve the accuracy.

Simulation of nanosilver migration from polystyrene nanocomposite into food simulants

  • Soleimani, Jaber;Ghanbarzadeh, Babak;Dehgannya, Jalal;Islami, Sima Baheri;Sorouraddin, Saeed M.
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.243-255
    • /
    • 2018
  • Polystyrene granules were combined with nanosilver to form a nanocomposite film. One-side migration was conducted to test into three food simulants (3% acetic acid, 10% ethanol and 95% ethanol) at $40^{\circ}C$ temperature on different period of time (2, 4, 6, 8 and 10 days). It was found that, among the simulants, the highest migration amount was obtained with 3% acetic acid, while the 95% ethanol revealed the least migration level. Diffusion coefficients of nanosilver particles into simulants were estimated by inverse simulation using experimental data of concentration variation in the simulants. The finite element method used to solve the mass transfer equation and the numerical results indicates the sameresponse with the experimental data. The numerical results confirmed that the highest diffusion coefficient for acetic acid 3% (1.82E-10 to $1.76E-9m^2\;s^{-1}$) and the lowest diffusion coefficient for ethanol 95% from 2 to 10 days were obtained, respectively. Also, results of diffusion coefficient - concentration relation showed, the diffusion coefficient had in direct correlation with time and concentration. The results indicated that, in the 3% acetic acid, due to the increasing of diffusion coefficient of silver nanoparticles, they are released faster and distributed uniformly.

How Supernovae Ejecta Is Transported In A Galaxy: DependenceOn Hydrodynamic Schemes In Numerical Simulations

  • Shin, Eun-jin;Kim, Ji-hoon
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • We studied the metal-distribution of isolated Milky-way mass galaxy using various hydrodynamic solvers and investigated the difference of the result between AMR and SPH codes. In particle-based codes, physical quantities like mass or metallicity defined in each particle are conserved unless being injected explicitly by the effect of the supernova, whereas in the Eulerian codes the diffusion is simply accomplished by hydro-equation. Therefore, without including explicit physics of diffusion on the SPH- codes, the metal mixing in the galaxy or CGM only can be accomplished by the direct motion of the particles, however, the standard-SPH codes depress the instability of the turbulent fluid mixing. In this work, we simulated under common initial conditions, common gas-physics like cooling-heating models, and star-formation feedback using ENZO(AMR) GIZMO and GADGET-2 codes. We additionally included a metal-diffusion algorithm on the SPH-codes, which follows the subgrid-turbulent mixing model investigated by Shen et al. (2010) and compared the effect of the metal-outflow on the halo region of the galaxy in different hydro-solvers. We also found that for the implementation of the diffusion scheme in the SPH-codes, the existence of a sufficient number of the gas-particles, which is the carrier of the metals, is necessary. So we tested a new initial condition for proper implementation of the diffusion scheme on the SPH simulations. By comparing the metal-contamination of the circumgalactic medium with different hydrodynamics models, we quantify the diffusion strength of AMR codes using diffusion parameterization of the SPH codes and also suggest the calibration solutions in the different behavior of codes in metal-outflow.

  • PDF

동축 층류 확산화염에서의 그을음 생성 (Soot Generation in a Coaxial Laminar Diffusion Flame)

  • 심성훈;신현동
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.9-15
    • /
    • 2002
  • Soot generation by combustion process has been investigated with objective of understanding of chemical reaction responsible for its formation in a coaxial laminar propane jet diffusion flame. For the direct photos, as the coflowing air flow rate is reduced, the area of soot luminous zone increases at first, then becomes smaller and smaller, and even disappears. The aspects of soot deposition can be acquired by using nine $15{\mu}m$ thin SiC fibers are positioned horizontally across the flame. Deposited soots on SiC fibers show the soot inception point and growth and soot oxidation zone in a typical propane diffusion. Soot is not generated anymore in a oxidizer deficient conditions of near-extinction and flame is fully occupied by transparent blue flame. It suggests that nonsooting pyroligneous blue reaction is being dominant in a oxidizer deficient ambience. In comparison with luminosities of SiC fibers and flame itself, indirect evidence is found that the process of soot nucleation and growth is endothermic reaction. It is remarkable that there exists two adjacent regions to have antithesis characteristics; one is exothermic reaction of blue flame and another endothermic reaction zone of soot formation.

  • PDF

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 (1) (Structure and Characteristics of Diffusion Flame behind a Bluff-Body in a Divergent Flow(I))

  • 최병륜;이중성
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1269-1279
    • /
    • 1995
  • An experimental study is carried out on turbulent diffusion flames stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. Flame stability limits, as well as size and temperrature of recirculation zone, are measured by direct and schlieren photographs to clarify the characteristics and structure of diffusion flames and to assess the effect of various divergent angle of duct. The results of the present study are as follows. Temperature in the recirculation zone decreases with increasing divergent angle. The blow-off velocity in parallel duct is higher than that in divergent duct. Critical blow-off velocity is expected to be about 8-12 degree through blow-off velocity pattern. Regardless of divergent angles, the length of recirculation zone is nearly constant, and this length becomes longer with rod diameter. Pressure gradient has an effect on the eddy structure in shear layer behind the rod. With the increase of divergent angle, large scale eddies by dissipated energy in shear layer are split into small scale eddies, and the flame becomes a typical distributedreacting flame.

기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법 (Modeling of CNG Direct Injection using Gaseous Sphere Injection Model)

  • 최민기;박성욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

무선 센서 네트워크에서 데이타 병합을 위한 다중 경로 라우팅 기법 (A Multi Path Routing Scheme for Data Aggregation in Wireless Sensor Networks)

  • 손형서;이원주;전창호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권3호
    • /
    • pp.206-210
    • /
    • 2009
  • 본 논문에서는 전체 노드들의 에너지를 균등하게 사용하기 위한 다중 경로 기반의 새로운 라우팅 정책을 제안한다. 이 정책은 기존의 데이타 병합 라우팅 기법에 새로운 형태의 루트 노드들을 추가한다. 각 루트 노드는 싱크노드의 일부 역할을 위임받고 개별적인 데이타 병합 경로를 구축한다. 그리고 전체 네트워크의 소스 노드들을 각 경로에 적절히 연결함으로써 더 많은 노드들의 에너지를 균등하게 사용할 수 있다. 따라서 전체 네트워크의 수명을 연장할 수 있다. 시뮬레이션을 통하여 네트워크를 구성하는 노드의 에너지 소모를 분산하면 네트워크의 생존시간을 연장할 수 있음을 검증한다. 또한 제안한 라우팅 기법은 소스노드 수가 증가할수록 전체 센서 네트워크의 성능 개선에 효율적임을 검증한다.