• Title/Summary/Keyword: Direct Contact Heat Exchange Method

Search Result 2, Processing Time 0.015 seconds

A Study on the Heat Release Characteristics of Gel Type Micro Size Latent Heat Storage Material Slurry with Direct Contact Heat Exchange Method (겔 상태의 미세 잠열 축열재 혼합수의 기액직접접촉식 열교환법에 의한 방열 특성)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.618-623
    • /
    • 2004
  • This paper has dealt with the heat storage characteristics of gel type micro size latent heat storage material slurry. The heat release operation to the gel type micro size latent heat storage material slurry was carried out using hot air bubbles by direct contact heat exchange. This experiment was carried out using phase change material of n-paraffin so the heat release amount is higher than cold water system. The parameters of this experiment were concentration of latent heat phase change material, height of heat release bath and inlet velocity of hot air. The main results obtained are as follows : (1) The effect of concentration of latent heat phase change material dispersed with water is very affective to the direct contact heat exchange between hot air and gel type micro size latent heat storage material slurry. (2) It is clarified that the most effective concentration of latent heat phase change material dispersed with water exists around 20mass% at this type of direct heat exchange model experiment.

Study on the Ethanol Recovery Process using Dircet Contact Heat Exchange (고온의 기포접촉에 의한 에탄올 회수공정에 관한 연구)

  • Lee, Won-Young;Yeo, Sang-Do;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-180
    • /
    • 1995
  • Direct contact heat exchange (DCHE) method has been employed to investigate the separation of ethanol from dilute aqueous solutions. Bubbles at high temperature were dispersed into a continuous liquid phase, generating temperature gradient in air-liquid interface, which causes heat and mass transfer accordingly. The experiments were performed in the ranges of jet regime air flow. The air-water stripping coefficient increased $5{\sim}10,\;and\;1{\sim}1.5$ times as temperature and air flow rate increased, respectively. The recovery ratio based on the initial ethanol concentration reached into 80% at the air flow rate of 84.88 m/min. The initial ethanol concentration showed little effect on the stripping coefficient and the recovery ratio.

  • PDF