• Title/Summary/Keyword: Direct/Indirect Leveling

Search Result 3, Processing Time 0.02 seconds

Analysis of Incidence Angle Using Total Station in Leveling

  • Roh, Tae-Ho;Seo, Dong-Ju;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Total Station (TS) is currently widespread and used in many fields of surveying projects. However, its application functions are not perfectly understood and so insufficiently used. One of them is indirect leveling method using TS. Because we can reach a considerable accuracy level with this method, it is gradually expanding for public surveying works such as construction of roads, airports and harbors. This paper gives results of an experiment to increase accuracy of indirect leveling by TS without direct leveling, which is more comfortable and quick to determine elevation.

  • PDF

Determination of Practical Orthometric Height for Permanent GPS Station (GPS 상시관측점의 실용 표고좌표 결정)

  • Yun, Hong-Sic;Huang, He;Song, Dong-Seob;Hwang, Jin-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.299-307
    • /
    • 2007
  • This study is about the calculation of practical orthometric height for permanent GPS station. We presented the method to determine the orthometric height precisely by combining leveling data, GPS data and gravimetry data, and determined the orthometric heights of thirty GPS stations. To test the result we developed the expected error model fur the determined orthometric heights regarding the accuracy of Korean national benchmarks and the precision of surveying methods used at this project. The reliability of the results was presented by comparing it with expected error model statistically.

Schedule Optimization in Resource Leveling through Open BIM Based Computer Simulations

  • Kim, Hyun-Joo
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this research, schedule optimization is defined as balancing the number of workers while keeping the demand and needs of the project resources, creating the perfect schedule for each activity. Therefore, when one optimizes a schedule, multiple potentials of schedule changes are assessed to get an instant view of changes that avoid any over and under staffing while maximizing productivity levels for the available labor cost. Optimizing the number of workers in the scheduling process is not a simple task since it usually involves many different factors to be considered such as the development of quantity take-offs, cost estimating, scheduling, direct/indirect costs, and borrowing costs in cash flow while each factor affecting the others simultaneously. That is why the optimization process usually requires complex computational simulations/modeling. This research attempts to find an optimal selection of daily maximum workers in a project while considering the impacts of other factors at the same time through OPEN BIM based multiple computer simulations in resource leveling. This paper integrates several different processes such as quantity take-offs, cost estimating, and scheduling processes through computer aided simulations and prediction in generating/comparing different outcomes of each process. To achieve interoperability among different simulation processes, this research utilized data exchanges supported by building SMART-IFC effort in automating the data extraction and retrieval. Numerous computer simulations were run, which included necessary aspects of construction scheduling, to produce sufficient alternatives for a given project.