• Title/Summary/Keyword: Dip-Coating

Search Result 375, Processing Time 0.023 seconds

High-Ic YBCO thick film fabricated by the MOD process (MOD 공정으로 제조된 고임계전류 YBCO 후막)

  • Shin, Geo-Myung;Song, Kyu-Jung;Moon, Seung-Hyun;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.6-9
    • /
    • 2008
  • We have investigated the MOD process successfully for the fabrication of the YBCO thick film on the $LaAlO_3$(001) single crystalline substrate. The cracking problem in YBCO thick film, a serious problem in the conventional TFA-MOD method, could be overcome with a careful control of precursor materials. Thus coating solution was prepared for the YBCO thick film by using fluorine-free precursor material. The precursor solutions were coated on the LAO(001) single crystalline substrate using the dip coating method, calcined at the temperature up to $500^{\circ}C$, and fired at various high temperatures for 2 h in a reduced oxygen atmosphere. Optimally processed YBCO thick film exhibited high critical current($I_c$) over 200 A/cm-width at 77K in self-field.

Evaluation of the Corrosion Resistance of Steel Coated with Zinc Using a Cr-free Coating Solution as a Function of Heat Treatment Time (Cr-free 코팅액에 의한 아연도금강판의 건조시간에 따른 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.67-74
    • /
    • 2010
  • Chromate conversion coating is a coating technique used to passivate aluminum, zinc, cadmium, copper, silver, magnesium, tin, and their alloys to slow corrosion. The process uses various toxic chromium compounds, which may include hexavalent chromium. The industry is developing less toxic alternatives in order to comply with substance restriction legislation, such as RoHS. One alternative is to develop a Cr-free coating solution. In this study, eco-friendly, Cr-free solutions (urethane solution S-700, organic/inorganic solution with Si LRO-317) were used. Test specimens were dried in a drying oven at $190^{\circ}C$ for 3, 5, 7, and 9 minutes. Corrosion resistance was evaluated using a salt spray test for 72 hours. The results show that the optimum corrosion resistance was achieved at $190^{\circ}C$ for five minutes for EGI and three or five minutes for HDGI, respectively. The adhesive properties of the two types of coating solutions were superior regardless of drying time.

Separation of Low Molecular Weight of Dye from Aqueous Solution Using the Prepared Nano-composite Hollow Fiber Membranes (중공사형 나노복합막 제조를 이용한 수용액으로부터 저분자량의 염료 분리 연구)

  • Park, Cheol Oh;Lee, Sung Jae;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.180-186
    • /
    • 2018
  • The nano-composite membranes were prepared onto the polyvinylidene fluoride (PVDF) hollow fiber membranes through twice dip-coating known layer-by-layer method. For the first coating, poly(vinylsulfonic acid, sodium salt)(PVSA) and Poly(styrene sulfonic acid)(PSSA) were used with varying the concentration and ionic strength (IS) and the poly(ethyleneimine)(PEI) as the second coating material was fixed at 10,000 ppm and IS = 0.3. To characterize the prepared nano-composite membranes, the permeabilities and rejection ratio were measured for each 100 ppm NaCl, $CaSO_4$, $MgCl_2$, and 25 ppm MO aqueous solution. The rejections were increased as the concentrations of coating materials increased. And it was confirmed that the salt rejections for PSSA as the coating material were higher than for PVSA. Typically, the permeability, 1.848 LMH and the rejection for MO 76.3% were obtained at the coating conditions of PSSA 30,000 ppm and I.S = 1.0.

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Fabrication of YBCO Coated Conductor by oxide-precursor-based MOD process employing IBAD substrate (IBAD 기판을 적용한 산화물 전구체 MOD 공정에 의한 YBCO Coated Conductor의 제조)

  • Kim Y. K.;Yoo J. M.;Ko J. W.;Heo S. Y.;Hong G. W.;Lee H. G.;Chung H. S.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.142-145
    • /
    • 2005
  • YBCO coated conductors have been fabricated with a newly developed oxide-precursor-based MOD process. The precursor solution was synthesized with low cost YBCO powders as starting materials and YBCO coated conductors have been deposited on IBAD substrate ($CeO_2$/IBAD-YSZ/SS). YBCO coated conductor prepared by dip coating shows transport $I_c$ of 15A/cm-w at 77 K. Microstructural and crystallographic analyses indicate that YBCO layer was grown in epitaxy with substrate and exhibited well-developed dense microstructure. Also discussed are processing and analysis of YBCO coated conductor by slot-die web coating method. It was shown that this oxide-based MOD process provides a low cost route to coated conductor with high $J_c$.

  • PDF

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei;Park, Sang-Shik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2015
  • $ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

A Study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating; (I) Synthesis of Zirconia Sol and Fabrication of Its Thin Film (졸-겔 세라믹 코팅에 의한 스테인레스강의 내산화 및 내식성 향상에 관한 연구;(I) 지르코니아 졸의 합성 및 박막의 제조)

  • Kim, Byong-Ho;Hong, Kwon;Shin, Dong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1060-1068
    • /
    • 1994
  • Stable zirconia sol was prepared from zirconium butoxide Zr(OC4O9)4 as a precursor and ethylacetoacetate(EAcAc) or diethylene glycol(DEG) as a chelating agent under ambient agent under ambient atmosphere by Sol-Gel process. The sythesized sol was coated on 304 stainless steel substrate by dip coating, thereafter zirconia film could be obtained by heat-treatment at $600^{\circ}C$. The characteristics of coating film were determined by FT-IR, XRD, and ellipsometion peak represented Zr-O-Zr bonding of tetragonal phase was shown at 470cm-1. Crystallization of zirconia gel and film from amorphous state to tetragonal phase started at 40$0^{\circ}C$, and then transformed into monoclinic phase around $700^{\circ}C$. Zirconia film coated on 304 stainless steel substrate showed relatively low porosity of 16% when it was coated with 0.4M zirconia sol and thereafter heat-treated at 80$0^{\circ}C$ and the film was densified continuously up to 90$0^{\circ}C$. The zirconia film of 10 nm thick acted as a protective layer against oxidation up to $700^{\circ}C$.

  • PDF

A Study on the Improvement of the Thermal Stability of PE Separator for Lithium Secondary Battery Application Using Poly(meta-phenylene isophthalamide) (Poly(meta-phenylene isophthalamide)를 이용한 리튬이차전지용 PE 분리막의 고내열화 연구)

  • Park, Mina;Ra, Byung Ho;Bae, Jin-Young;Kim, Byung-Hyun;Choi, Won-Kun
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • In this study, we prepared separators with improved thermal stability by coating microporous polyethylene (PE) film for lithium secondary battery using poly(meta-phenylene isophthalamide) (Nomex). The mechanical and thermal properties of prepared separators were evaluated by thermal stability test and TMA as a function of the Nomex concentration and coating parameters. The corresponding coated PE separator showed better thermal and mechanical properties than the original PE separator. Electrochemical properties were also assessed by ionic conductivity, cyclic voltammetry and charge/discharge cycle.

Anti-Corrosion Performance and Applications of PosMAC® Steel

  • Sohn, Il-Ryoung;Kim, Tae-Chul;Ju, Gwang-Il;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • PosMAC® is a brand of Zn-Mg-Al hot-dip coated steel sheet developed by POSCO. PosMAC® can form dense surface oxides in corrosive environments, providing advanced corrosion resistance compared to traditional Zn coatings such as GI and GA. PosMAC® 3.0 is available for construction and solar energy systems in severe outdoor environments. PosMAC®1.5 has better surface quality. It is suitable for automotive and home appliances. Compared to GI and GA, PosMAC® shows significantly less weight reduction due to corrosion, even with a lower coating thickness. Thin coating of PosMAC® provides advanced quality and productivity in arc welding applications due to its less generation of Zn fume and spatters. In repeated friction tests, PosMAC® showed lower surface friction coefficient than conventional coatings such as GA, GI, and lubricant film coated GA. Industrial demand for PosMAC® steel is expected to increase in the near future due to benefits of anti-corrosion and robust application performance of PosMAC® steel.

Formation of Antibacterial Film dried at Room Temperature using nano-sized TiO2 Particle (TiO2 나노 입자를 이용한 상온건조용 항균 코팅)

  • Choi, Young Jin;Kim, Donggyu;Kim, Insoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.401-409
    • /
    • 2010
  • This study was performed to develop an antibacterial film that can be dried at room temperature. A nanosized TiO$_2$ particle-dispersed solution was prepared by the hydrothermal treatment of peroxo-titanic acid at 160${^{\circ}C}$ for 4h. The binder was synthesized through the hydrolysis and condensation reactions of TEOS (10cc) and GPTS (3.5cc) in the mixture of H$_2$O (30cc) and EtOH (30cc). The synthesized binder was mixed with 0.1 M of TiO$_2$ solution in a volume ratio of binder/TiO$_2$ solution=0.25~0.5. The glass substrate was coated after using the dip coating method, which was then followed by drying for over 2h at room temperature. Although the TiO$_2$ particles did not chemically-bond to the binder, the coating layer strongly adhered to the substrate and displayed good antibacterial properties.