• 제목/요약/키워드: Dimensionless Parameter

검색결과 188건 처리시간 0.03초

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Static and dynamic bending of ball reinforced by CNTs considering agglomeration effect

  • Chenghong Long;Dan Wang;H.B. Xiang
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.419-428
    • /
    • 2023
  • In this paper, dynamic and static bending of ball modelled by nanocomposite microbeam by nanoparticles seeing agglomeration is presented. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The football ball is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the maximum dimensionless dynamic deflection is reduced about 17%. In addition, assuming CNTs agglomeration increases the dimensionless dynamic deflection about 14%. It is also found that with increasing the CNTs volume percent from 0 to 0.15, the static deflection is decreased about 3 times due to the enhance in the stiffness of the structure. In addition, with enhancing the nonlocal parameters, the dynamic deflection is increased about 3.1 times.

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • 제38권1호
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.

모래와 실트의 혼합층에서 순간충격시험에 의한 지하수위 강하구역의 공극체적 산정 (The Pore Volume of Groundwater Level Drawdown Zone Through Slug/Bail Tests in Sand and Silt Soils)

  • 김태영;강동환;정상용;양성일;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 2007
  • 본 연구에서는 모래층(sbt-1공), 실트질 모래층(sbt-2공) 및 모래와 실트질 모래의 혼합층(sbt-3공)에서 순간충격시험이 수행되었다. 그리고, 현장시험에 의해 산정된 수리전도도와 비저류계수를 이용하여 회수시험 시 지하수위 강하구역의 공극체적을 산정하였다. 순간충격시험의 해석은 KGS 모델이 가장 적합하였으며, 주입시험과 회수시험 시 평균수리전도도는 sbt-1공 $6.65{\times}10^{-5}$m/sec, sbt-2공 $6.33{\times}10^{-6}$m/sec, sbt-3공 $3.72{\times}10^{-5}$m/sec이며, 평균비저류계수는 sbt-1공 0.0225, sbt-2공 0.0177, sbt-3공 0.0259로 산정되었다. 투수량계수, 저류계수, 시험시간 및 시험공 제원을 이용하여 무차원 시간과 무차원 우물저류계수를 산정하였다. 그리고, Cooper 등(1967)이 제시한 변수 ${\alpha}$${\beta}$를 이용하여 무차원 수두강하량이 선정되었다. 산정된 무차원 시간, 무차원 우물저류계수 및 무차원 수두강하량을 이용하여 순간충격시험 시의 영향반경이 산정되었다. 주입시험과 회수시험 시 평균영향반경은 sbt-1공 1.377 m, sbt-2공 1.253 m, sbt-3공 1.558 m로 산정되었다. 그리고, 회수시험 시 더미 회수에 의한 지하수위 강하구역의 공극체적은 sbt-1공 $145,636cm^3$, sbt-2공 $71,561cm^3$, sbt-3공 $100,418cm^3$로 산정되었으며, 시험공의 부피를 제외한 지하수위 강하구의 공극체적은 sbt-1공 $145,410cm^3$, sbt-2공 $71,353cm^3$, sbt-3공 $100,192cm^3$이었다.

Squeezing Flow of Micropolar Nanofluid between Parallel Disks

  • Khan, Sheikh Irfanullah;Mohyud-Din, Syed Tauseef;Yang, Xiao-Jun
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.476-489
    • /
    • 2016
  • In the present study, squeezing flow of micropolar nanofluid between parallel infinite disks in the presence of magnetic field perpendicular to plane of the disks is taken into account. The constitutive equations that govern the flow configuration are converted into nonlinear ordinary differential with the help of suitable similarity transforms. HAM package BVPh2.0 has been employed to solve the nonlinear system of ordinary differential equations. Effects of different emerging parameters like micropolar parameter K, squeezed Reynolds number R, Hartmann number M, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le for dimensionless velocities, temperature distribution and concentration profile are also discussed graphically. In the presence of strong and weak interaction (i.e. n = 0 and n = 0.5), numerical values of skin friction coefficient, wall stress coefficient, local Nusselt number and local Sherwood number are presented in tabulated form. To check the validity and reliability of the developed algorithm BVPh2.0 a numerical investigation is also a part of this study.

차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성 (Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water)

  • 황영규
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

건물 내장재의 화재위험성 평가 방법 (A Fire Hazard Assessment of Interior Finish Materials)

  • 김운형
    • 한국화재소방학회논문지
    • /
    • 제12권2호
    • /
    • pp.17-28
    • /
    • 1998
  • 건물 화재시 예상되는 내장재의 실째 화재성농올 기준으로 한 위험성 명가방법올 제시하였다. 이률 위해 ISO Room Corner Test. (9705)를 기준으로 Qui ntie re의 화재확산 모델을 이용하여 내장재의 열 적 특성과 플래쉬 오버 도달시간과의 상관성을 유도하고 스쩨덴의 실제 시험결과와 비교 분석하였다. 이 결과, 내장재의 상대척인 화재위험성은 화재확산 변수 b륨 기준으로 명가될 수 있었다.

  • PDF

유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(I) -민감도분석방법의 개발- (The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (I) - Development of Sensitivity Analysis Method -)

  • 서규우;조원철
    • 한국수자원학회논문집
    • /
    • 제31권3호
    • /
    • pp.243-252
    • /
    • 1998
  • 본 연구에서는 새로운 무차원값을 제시하여 도시유출모형의 매개변수결정을 위한 상대적인 민감도분석을 실시하여 매개변수별 민감도특성을 구명하였다. 민감도분석을 위한 무차원값으로 총유출량비,첨두유출량비, 유출민감도비, 민감도비율을 다음과 같이 개발하였다. $$ 유역면적의 크기와 강우분포형과 강우지속기간별로 각 적용단계별 총유출량비, 첨두유출량비, 유출민감도를 산정하기 위해 ILLUDAS모형과 SWMM모형의 매개변수를 선저하고 적정 적용범위를 결정하였다.

  • PDF