• Title/Summary/Keyword: Dimensionality Curse

Search Result 58, Processing Time 0.021 seconds

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

Design of Tree Architecture of Fuzzy Controller based on Genetic Optimization

  • Han, Chang-Wook;Oh, Se-Jin
    • 융합신호처리학회논문지
    • /
    • 제11권3호
    • /
    • pp.250-254
    • /
    • 2010
  • As the number of input and fuzzy set of a fuzzy system increase, the size of the rule base increases exponentially and becomes unmanageable (curse of dimensionality). In this paper, tree architectures of fuzzy controller (TAFC) is proposed to overcome the curse of dimensionality problem occurring in the design of fuzzy controller. TAFC is constructed with the aid of AND and OR fuzzy neurons. TAFC can guarantee reduced size of rule base with reasonable performance. For the development of TAFC, genetic algorithm constructs the binary tree structure by optimally selecting the nodes and leaves, and then random signal-based learning further refines the binary connections (two-step optimization). An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation.

Dimensionality reduction for pattern recognition based on difference of distribution among classes

  • Nishimura, Masaomi;Hiraoka, Kazuyuki;Mishima, Taketoshi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1670-1673
    • /
    • 2002
  • For pattern recognition on high-dimensional data, such as images, the dimensionality reduction as a preprocessing is effective. By dimensionality reduction, we can (1) reduce storage capacity or amount of calculation, and (2) avoid "the curse of dimensionality" and improve classification performance. Popular tools for dimensionality reduction are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Independent Component Analysis (ICA) recently. Among them, only LDA takes the class labels into consideration. Nevertheless, it, has been reported that, the classification performance with ICA is better than that with LDA because LDA has restriction on the number of dimensions after reduction. To overcome this dilemma, we propose a new dimensionality reduction technique based on an information theoretic measure for difference of distribution. It takes the class labels into consideration and still it does not, have restriction on number of dimensions after reduction. Improvement of classification performance has been confirmed experimentally.

  • PDF

The Kernel Trick for Content-Based Media Retrieval in Online Social Networks

  • Cha, Guang-Ho
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1020-1033
    • /
    • 2021
  • Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.

Boosting Multifactor Dimensionality Reduction Using Pre-evaluation

  • Hong, Yingfu;Lee, Sangbum;Oh, Sejong
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.206-215
    • /
    • 2016
  • The detection of gene-gene interactions during genetic studies of common human diseases is important, and the technique of multifactor dimensionality reduction (MDR) has been widely applied to this end. However, this technique is not free from the "curse of dimensionality" -that is, it works well for two- or three-way interactions but requires a long execution time and extensive computing resources to detect, for example, a 10-way interaction. Here, we propose a boosting method to reduce MDR execution time. With the use of pre-evaluation measurements, gene sets with low levels of interaction can be removed prior to the application of MDR. Thus, the problem space is decreased and considerable time can be saved in the execution of MDR.

고차원 공간에서 효과적인 차원 축소 기법 (An Effective Method for Dimensionality Reduction in High-Dimensional Space)

  • 정승도;김상욱;최병욱
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.88-102
    • /
    • 2006
  • 멀티미디어 정보 검색에서 멀티미디어 데이터는 고차원 공간상의 벡터로 표현된다. 이러한 특정 벡터를 효율적으로 검색하기 위하여 다양한 색인 기법이 제안되어 왔다. 그러나 특정 벡터의 차원이 증가하면서 색인 기법의 효율성이 급격히 떨어지는 차원의 저주 문제가 발생한다. 차원의 저주 문제를 해결하기 위하여 색인하기 이전에 원 특정 벡터를 저차원 공간상의 벡터로 사상하는 차원 축소 기법이 제안된 바 있다. 본 연구에서는 벡터의 놈과 각도 성분을 이용하여 유클리드 거리를 근사하는 함수를 기반으로 하는 새로운 차원 축소 기법을 제안한다. 먼저, 유클리드 거리 근사를 위하여 추정된 각도의 오차의 발생 원인을 분석하고 이 오차를 줄이기 위한 기본 방향을 제시한다. 또한, 고차원 특정 벡터를 다수의 특징 서브 벡터들의 집합으로 분리하고 각 특징 서브 벡터로부터 놈과 각도 성분을 근사하여 차원을 축소하는 새로운 기법을 제안한다. 각도 성분을 정확하게 근사하기 위해서는 올바른 기준 벡터의 설정이 필수적이다. 본 연구에서는 최적 기준 벡터의 조건을 제시하고, Levenberg-Marquardt 알고리즘을 이용하여 기준 벡터를 선정하는 방법을 제안한다. 또한, 축소된 저차원 공간상의 벡터틀을 위한 새로운 거리 함수를 정의하고, 이 거리 함수가 유클리드 거리 함수의 하한 함수가 됨을 이론적으로 증명한다. 이는 제안된 기법이 착오 기각의 발생을 허용하지 않으면서 효과적으로 차원을 줄일 수 있음을 의미하는 것이다. 끝으로, 다양한 실험에 의한 성능 평가를 통하여 제안하는 방법의 우수성을 규명한다.

기계학습 기반 랜섬웨어 공격 탐지를 위한 효과적인 특성 추출기법 비교분석 (Comparative Analysis of Dimensionality Reduction Techniques for Advanced Ransomware Detection with Machine Learning)

  • 김한석;이수진
    • 융합보안논문지
    • /
    • 제23권1호
    • /
    • pp.117-123
    • /
    • 2023
  • 점점 더 고도화되고 있는 랜섬웨어 공격을 기계학습 기반 모델로 탐지하기 위해서는, 분류 모델이 고차원의 특성을 가지는 학습데이터를 훈련해야 한다. 그리고 이 경우 '차원의 저주' 현상이 발생하기 쉽다. 따라서 차원의 저주 현상을 회피하면서 학습모델의 정확성을 높이고 실행 속도를 향상하기 위해 특성의 차원 축소가 반드시 선행되어야 한다. 본 논문에서는 특성의 차원이 극단적으로 다른 2종의 데이터세트를 대상으로 3종의 기계학습 모델과 2종의 특성 추출기법을 적용하여 랜섬웨어 분류를 수행하였다. 실험 결과, 이진 분류에서는 특성 차원 축소기법이 성능 향상에 큰 영향을 미치지 않았으며, 다중 분류에서도 데이터세트의 특성 차원이 작을 경우에는 동일하였다. 그러나 학습데이터가 고차원의 특성을 가지는 상황에서 다중 분류를 시도했을 경우 LDA(Linear Discriminant Analysis)가 우수한 성능을 나타냈다.

강화학습의 Q-learning을 위한 함수근사 방법 (A Function Approximation Method for Q-learning of Reinforcement Learning)

  • 이영아;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1431-1438
    • /
    • 2004
  • 강화학습(reinforcement learning)은 온라인으로 환경(environment)과 상호작용 하는 과정을 통하여 목표를 이루기 위한 전략을 학습한다. 강화학습의 기본적인 알고리즘인 Q-learning의 학습 속도를 가속하기 위해서, 거대한 상태공간 문제(curse of dimensionality)를 해결할 수 있고 강화학습의 특성에 적합한 함수 근사 방법이 필요하다. 본 논문에서는 이러한 문제점들을 개선하기 위해서, 온라인 퍼지 클러스터링(online fuzzy clustering)을 기반으로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 온라인 학습이 가능하고 환경의 불확실성을 표현할 수 있는 강화학습에 적합한 함수근사방법이다. Fuzzy Q-Map을 마운틴 카 문제에 적용하여 보았고, 학습 초기에 학습 속도가 가속됨을 보였다.

동적 비트 할당을 통한 다차원 벡터 근사 트리 (Multi-Dimensional Vector Approximation Tree with Dynamic Bit Allocation)

  • 복경수;허정필;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.81-90
    • /
    • 2004
  • 최근 컴퓨팅 환경의 급속한 발전으로 다양한 응용에서 다차원 데이터에 대한 활용이 증가되고 있다. 본 논문에서는 내용 기반 다차원 데이터 검색을 위한 벡터 관사 트리를 제안한다 제안하는 색인 구조는 공간 분할 방식과 벡터 근사화 기법을 이용하여 영역 정보를 표현하기 때문에 하나의 노드 안에 많은 영역 정보를 저장하여 트리의 높이를 감소시킨다 또한 다차원의 데이터 공간에 동적인 비트로 할당하여 다차원색인 구조의 문제점인 '차원의 저주 현상'을 해결한다. 또한 군집화된 데이터에 대해서 효과적인 표현 기법을 제공한다. 자식 노드의 영역 정보는 부모 노드를 기준으로 상대적으로 표현함으로서 좀더 정확한 영역을 표현할 수 있다. 제안하는 색인 구조의 우수성을 보이기 위해 실험을 통해 기존에 제안된 색인구조와의 비교 분석을 수행한다.

  • PDF

딥러닝 기반 개인화 패션 추천 시스템

  • Omer, Muhammad;Choo, Hyunseung
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.40-42
    • /
    • 2022
  • People's focus steadily shifted toward fashion as a popular aesthetic expression as their quality of life improved. Humans are inevitably drawn to things that are more aesthetically appealing. This human proclivity has resulted in the evolution of the fashion industry over time. However, too many clothing alternatives on e-commerce platforms have created additional obstacles for clients in recognizing their suitable outfit. Thus, in this paper, we proposed a personalized Fashion Recommender system that generates recommendations for the user based on their previous purchases and history. Our model aims to generate recommendations using an image of a product given as input by the user because many times people find something that they are interested in and tend to look for products that are like that. In the system, we first reduce data dimensionality by component analysis to avoid the curse of dimensionality, and then the final suggestion is generated by neural network. To create the final suggestions, we have employed neural networks to evaluate photos from the H&M dataset and a nearest neighbor backed recommender.