• Title/Summary/Keyword: Dimensional accuracy

검색결과 2,609건 처리시간 0.036초

Net-shape Manufacturing of Micro Porous Metal Components by Powder Injection Molding

  • Nishiyabu, Kazuaki;Matsuzaki, Satoru;Tanaka, Shigeo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.93-94
    • /
    • 2006
  • A novel production method for porous metal components has been developed by applying powder space holder (PSH) method to metal powder injection molding (MIM) process. The PSH-MIM method has an industrial competitive advantage that is capable of net-shape manufacturing the micro-sized porous metal products with complicated shapes and controlled porosity and pore size. In this study, the small impeller with homogeneous micro-porous structure was manufactured by the PSH-MIM method. The effects of combinations in size and fraction of PMMA particle on dimensional tolerance and variation of sintered porous specimens were investigated. It was concluded that the PSH-MIM method could manufacture commercially microporous metal components with high dimensional accuracy.

  • PDF

Moderately clipped LASSO for the high-dimensional generalized linear model

  • Lee, Sangin;Ku, Boncho;Kown, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.445-458
    • /
    • 2020
  • The least absolute shrinkage and selection operator (LASSO) is a popular method for a high-dimensional regression model. LASSO has high prediction accuracy; however, it also selects many irrelevant variables. In this paper, we consider the moderately clipped LASSO (MCL) for the high-dimensional generalized linear model which is a hybrid method of the LASSO and minimax concave penalty (MCP). The MCL preserves advantages of the LASSO and MCP since it shows high prediction accuracy and successfully selects relevant variables. We prove that the MCL achieves the oracle property under some regularity conditions, even when the number of parameters is larger than the sample size. An efficient algorithm is also provided. Various numerical studies confirm that the MCL can be a better alternative to other competitors.

정밀 좌표측정용 머신비전 시스템의 광학적 해석에 관한 연구 (A Study on the optical aspects of machine vision based dimensional measurement system)

  • Lee, E.H.
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.149-163
    • /
    • 1994
  • A novel method of dimensional measurement using machine vision, which is called Landmark Tracking System, has been developed. Its advantages come form tracking only the bright, standard shaped "landmarks" which are made from retroreflective sheets. In the design of the LTS, it is essential to know the relationship between optical parameters and their influence on system performance. Such optical parameters include the brightness of landmark image, the illumination system design, and the choice of imaging optics. And the performance of retroreflective material also plays important role in the LTS performances. Influences of such optical parameters on LTS's dimensional measurement characteristics are investigated, with respect to the retroreflective material, the imaging optics, and the illumination system. Measuremtn errors due to parameter variations are also analyzed. Experiments are performed with a LTS prototype. Retroreflective characteristics are verified, and the LTS's measurement performances are measured in the form of repeatability and accuracy. Experimental results shgow that the LTS has repeatability better than 1/30,000 of a field of view(30 degrees), and accuracy better tha 1/3,000 of a field fo view.d fo view.

  • PDF

케이블센서를 이용한 2차원 위치측정 시스템 (A Two-Dimensional Position Sensor Using Cable Extension Transducers)

  • 홍대희
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.159-165
    • /
    • 1999
  • Based on the cable-extension transducers, a new technique for two dimensional position measurement is developed in this paper. This new technique includes the use of two such transducers and the planar position is determined through triangulation. This paper also presents uncertainty analysis results for establishing sensor design specifications. An actual prototyped sensor system is built and its accuracy is verified through h\both experiments with coordinate measurement machines and its application to the real-time control of a high load wheeled mobile robot. This new type of position sensor can be easily used in a wide variety of automation applications in industry for two dimensional position measurements with high accuracy over a relatively large range, and it is both cast effective and robust against hostile environments.

  • PDF

Compressive sensing-based two-dimensional scattering-center extraction for incomplete RCS data

  • Bae, Ji-Hoon;Kim, Kyung-Tae
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.815-826
    • /
    • 2020
  • We propose a two-dimensional (2D) scattering-center-extraction (SCE) method using sparse recovery based on the compressive-sensing theory, even with data missing from the received radar cross-section (RCS) dataset. First, using the proposed method, we generate a 2D grid via adaptive discretization that has a considerably smaller size than a fully sampled fine grid. Subsequently, the coarse estimation of 2D scattering centers is performed using both the method of iteratively reweighted least square and a general peak-finding algorithm. Finally, the fine estimation of 2D scattering centers is performed using the orthogonal matching pursuit (OMP) procedure from an adaptively sampled Fourier dictionary. The measured RCS data, as well as simulation data using the point-scatterer model, are used to evaluate the 2D SCE accuracy of the proposed method. The results indicate that the proposed method can achieve higher SCE accuracy for an incomplete RCS dataset with missing data than that achieved by the conventional OMP, basis pursuit, smoothed L0, and existing discrete spectral estimation techniques.

광조형법에 있어서 OFFSET정보생성 알고리즘 개발에 관한 연구 (A Study on Algorithm Development of Offset Data Generation in Stereolithography)

  • 김준안;홍삼열;백인환
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.70-76
    • /
    • 1996
  • In the Stereolithography process, three-dimensional objects are built by sequentially curing, generated by horizontal slicing of a three-dimensional CAD model. The dimensional accuracy of a menufactured part depends on the accuracy of curing performed by laser beam radius and the half of curing width. When offsetting, some slices have collinear segments, coincident vertices, line jerks and open loops. After remove above issues we have correct offsets data. And in last step, these data are used to scan paths.

  • PDF

마이크로광조형법을 이용한 미세삼차원구조물의 제조공정 중 형상정밀도 및 경화특성에 관한 연구 (Shape accuracy and curing characteristics of photopolymer during fabrication of three-dimensional microstructures using microstereolithography)

  • 정대준;김성훈;정성호
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.46-50
    • /
    • 2004
  • The curing characteristics of a liquid photopolymer during microstereolithography and the shape accuracy of thereby fabricated microstructures were investigated experimentally. A He-Cd laser with a wavelength of 442nm and a photopolymer consisted of a commercial resin from SK chemical and a photoinitiat or were used for the experiment. By varying the laser beam power and scanning speed of the focused laser beam, minimum curing thickness of 50 ${\mu}ㅡ$ was obtained. The distortion of solidified structure due to adhesion force was measured and the optimum fabrication conditions were determined. Also, the feasibility of direct fabrication of three-dimensional microstructures by Super IH process was examined.

Semi-Lagrangian법을 이용한 구 좌표계에서의 이류 방정식 해석 (Numerical Simulation for the Advection Equation on the Sphere by Sphere-Lagrangian Method)

  • 윤성영
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.8-17
    • /
    • 2004
  • A Semi-Lagrangian method based on CIP(Cubic Interpolated Pseudoparticle)method is proposed and it is applied to solve the two dimensional advection equation. Especially the attentions are given to settle the pole problem and to enhance the accuracy in solving the advection equation on the spherical coordinate system. Tn this algorithm, the CU method is employed as the Semi-Lagrangian method and extended to the spherical coordinate system. To enhance the accuracy of the solution, the spatial discretization is made by CIP method. The mathematical formulation and numerical results are also described. To verify the efficiency, accuracy and capability of proposed algorithm, two dimensional rotating cosine bell problem and the frontogenesis problem are simulated by the present scheme. As results, it is confirmed that the present scheme gives an accurate solution and settles the pole problem in the advection equation on the sphere.

슬릿광 3차원 형상측정에서 측정분해능 최적화를 위한 시스템설계 및 카메라보정 (System Design and Camera Calibration of Slit Beam Projection for Maximum Measuring Accuracy)

  • 박현구;김명철;김승우
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1182-1191
    • /
    • 1994
  • This paper presents an enhanced method of slit beam projection intended for the rapid measurement of 3-dimensional surface profiles of dies and molds. Special emphasis is given to optimizing the design of optical system so that the measuring accuracy can be maximized by adopting two-plane camera calibration together with sub-pixel image processing techniques. Finally, several measurement examples are discussed to demonstrate that an actual measuring accuracy of $\pm$ 0.2 mm can be achieved over the measuring range of 500 mm{\times}300mm{\times}200mm$.

냉간단조품의 정밀도향상을 위한 금형해석 기법 (Methodology of tool analysis to improve the accuracy of cold forged parts)

  • Kim, T.H.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.29-37
    • /
    • 1995
  • In many metal forming processes, it is common to use stress rings for reducing elastic deformation and failures of forming dies. But, shrink fit of dies inner diameter of die insert, machining is reuqired after shrink fit processes. The reduction of inner diameter can be predicted by the analysis of elastic-plastic finite element method. The dimension of dies before shrink fit can be determined to minimize or remove machining after shrink fit processes by deformation analysis of die. The computation of contacting stresses along die surface was analyzied by rigid plasitic finite element method, and data were interpolated by the contact search algorithm. In this paper, we propose the analysis method of forging dies after shrink fit and forming to improve dimensional accuracy of final products.

  • PDF