• Title/Summary/Keyword: Dimensional Variations

Search Result 632, Processing Time 0.026 seconds

Analysis of Temperature Distribution and Heat Loss for an Asymmetric Trapezoidal Fin (비대칭 사다리꼴 핀의 온도분포와 열손실 해석)

  • Kang, Hyung-Suk;Song, Nyeon-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.377-383
    • /
    • 2012
  • The temperature distribution of an asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For this asymmetric fin, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered simultaneously. The temperature profile with the variation of dimensionless fin length and height coordinates is shown. Also, the temperature variation at the bottom tip of the fin is presented as a function of the fin shape factor. Heat losses through the fin base and from each side are compared for variations in fin length. One of the results shows that temperature at the fin bottom tip decreases linearly as the fin shape factor increases.

Accuracy and reproducibility of 3D digital tooth preparations made by gypsum materials of various colors

  • Tan, Fa-Bing;Wang, Chao;Dai, Hong-Wei;Fan, Yu-Bo;Song, Jin-Lin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.8-17
    • /
    • 2018
  • PURPOSE. The study aimed to identify the accuracy and reproducibility of preparations made by gypsum materials of various colors using quantitative and semi-quantitative three-dimensional (3D) approach. MATERIALS AND METHODS. A titanium maxillary first molar preparation was created as reference dataset (REF). Silicone impressions were duplicated from REF and randomized into 6 groups (n=8). Gypsum preparations were formed and grouped according to the color of gypsum materials, and light-scanned to obtain prepared datasets (PRE). Then, in terms of accuracy, PRE were superimposed on REF using the best-fit-algorithm and PRE underwent intragroup pairwise best-fit alignment for assessing reproducibility. Root mean square deviation (RMSD) and degrees of similarity (DS) were computed and analyzed with SPSS 20.0 statistical software (${\alpha}=.05$). RESULTS. In terms of accuracy, PREs in 3D directions were increased in the 6 color groups (from 19.38 to $20.88{\mu}m$), of which the marginal and internal variations ranged $51.36-58.26{\mu}m$ and $18.33-20.04{\mu}m$, respectively. On the other hand, RMSD value and DS-scores did not show significant differences among groups. Regarding reproducibility, both RMSD and DS-scores showed statistically significant differences among groups, while RMSD values of the 6 color groups were less than $5{\mu}m$, of which blue color group was the smallest ($3.27{\pm}0.24{\mu}m$) and white color group was the largest ($4.24{\pm}0.36{\mu}m$). These results were consistent with the DS data. CONCLUSION. The 3D volume of the PREs was predisposed towards an increase during digitalization, which was unaffected by gypsum color. Furthermore, the reproducibility of digitalizing scanning differed negligibly among different gypsum colors, especially in comparison to clinically observed discrepancies.

Computation of Bed Load Transport in Rivers (하천 소류사 이동량의 산정)

  • Yu, Dong-Hun;Sin, Seung-Ho;Im, Hak-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.711-723
    • /
    • 2000
  • Existing equations of bed load transport have large variations in their forms and adopt different variables so that it is very difficult to understand the characteristics of each equation. Different sets of measurement data have been employed for the development of various equations, and the comparison between them is completely dependent on the choice of the data for the verification. Several equations seem to have some defects in their basic assumptions. Various non-dimensional physical numbers directly associated with the mechanism of bed load transport are related with each other, and one of them is chosen for the unification of the form. Good ideas introduced in a certain equation are employed for the refinement of other equations. Then optimum values of empirical parameters have been determined by using the data collected by Brownlie(1981) and a new bed load equation has been developed, which is considered widely valid and relatively very accurate.curate.

  • PDF

Characteristics of Culm Anatomy and Dimensional Variation in Genus Phyllostachys Grown Damyang District, Korea (담양지방(潭陽地方) 왕대속(屬) 4종(種)의 조직(組織) 및 간내(稈內) 변이성(變異性))

  • Lee, Jae-Ki;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 1987
  • This study was carried out to investigate the anatomical characteristics, the radial and axial variation of the cell dimension and bulk density for four bamboo species used as the major material of bamboo products in Korea; Phyllostachys(P.bambusoides, P.edulis, P.nigra var.henonis, and Pnigra). The results obtained were summarized as follows; 1) In the outer part of culm, the mophological difference of cell diameter and distribution were not acknowledged. However, gum-like substance was occurred In the epidermis, hypodermis, cortex and metaxylem vessel of P.nigra, while it was occured only in the metaxylem vessel of P.edulis. 2) The protoxylem vessel in the central zone of culm-wall could be in the two types; the first type consisted of 4-5 small cell pieces occurred in P.edulis and P.nigra var. henonis, the second type of 1-2 large cell pieces in P.bambusoides and P.nigra. And transition of cell diameter from the vascular bundle sheath to the ground tissue was gradually enlarged in P.nigra and P.edulis but abruptly in P.bambusoides and P.nigra var. henonis. 3) Thin-wall tyloses were well developed in the outer and central zone of culm-wall in four species. 4) Compared with the central part of culm-wall, the number of parenchyma cells and the amount of the vascular bundle sheaths per unit area were a few in the inner part. The inner part nearest to the pith cavity was consisted of thick-well parenchyma cell. 5) The dimensional variations of metaxylem vessel and parenchyma cell in the radial direction were decreased from the inner part to the epidermis in all species observed. 6) The fiber length was the maximum in the central zone and its diameter was increased from the inner part to the outer part. In the axial variation. fiber length was slightly increased from the base and then decresed slowly toward the top, and its diameter was reverse. 7) The axial variation of the bulk density was continuously increased from the base toward the top and its radial variation was rapidly increased from the inner part to the epidermis.

  • PDF

A Study on Two-Dimensional Forming of Ship Hull Plate by Geometrical Approach (곡가공 공정에서 기하학적 접근법에 의한 2차원 성형에 관한 연구)

  • Seong, Woo-Jae;Ahn, Jun-Su;Kim, Hyun-Uk;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.32-37
    • /
    • 2009
  • In shipyard, plate forming is widely used to form the ship hull plate in various shapes. Line heating method by using a flame torch is one of the major shipbuilding processes carried out by skilled workers. Since the forming characteristics depend upon their experiences in manual forming, there are much variations between products and difficulties in communication between engineers and workers. Hence, it needs to develop an automatic forming system which can not only reduce the working time and rework costs but also improve the working environment and hull forming productivity. One of the final goals of plate forming automation is to form a target shape from the initial plate automatically. For automated plate forming, it is required to determine where and how to heat on the plate. To realize this procedure, the inverse problem should be first solved and the effect of curvature shape formed at the heating path should be investigated. In this study, the inverse problem was solved by geometrical approach using the relationship between bending angle and radius of curvature of the curved shape. In addition, experiments of two-dimensional plate forming were performed with the distance-based method considering the curved bending with curvature. The result of the formed shape agreed considerably well with the target shape.

Research Trend of The Heat-Treatment of Wood for Improvement of Dimensional Stability and Resistance to Biological Degradation (목재의 치수안정성과 내후성 개선을 위한 열처리 가공에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.457-476
    • /
    • 2016
  • This was investigated on the major issues and research trends regarding the heat-treatment of woods through literature reviews. The principal heat-treatment technologies utilized for industrial purposes include the Plato-process (Netherlands), the Retification process (France), the OHT-process (Germany), and the Thermowood Process (Finland). Factors that mainly influence the heat-treatment process are the wood species, process temperature, processing time, and the heating medium (air, steam, vacuum, N2, oil, etc.). Researches on investigating the optimal conditions with these process conditions being the variables stand as the mainstream. Heat-treated woods present dimensional stability improvement, but mass loss and strength reduction, a wide variations for decaying inhibition, and insufficient resistance against mold, wood borer, and termites. For further improvement in respects of durability or resistance to biological degradation, necessity to search for more suitable heat treatment process and processing conditions fit for each wood species has been suggested. Exploiting new ways to utilize heat-treated wood and extending its range of use have been considered to be important matters that need more effort put into for the sustainable and sound environment as well as saving the wood resources.

Accuracy of virtual models in the assessment of maxillary defects

  • Kamburoglu, Kivanc;Kursun, Sebnem;Kilic, Cenk;Ozen, Tuncer
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Materials and Methods: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) $60{\times}60mm$ FOV, $0.125mm^3$ ($FOV_{60}$); 2) $80{\times}80mm$ FOV, $0.160mm^3$ ($FOV_{80}$); and 3) $100{\times}100mm$ FOV, $0.250mm^3$ ($FOV_{100}$). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. Results: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. Conclusion: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

The turbulent wake of a square prism with wavy faces

  • Lin, Y.F.;Bai, H.L.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.

A Study on the Part Shrinkage in Injection Molded Annular Shaped Product for Glass Reinforced Polycarbonate (유리섬유 강화 폴리카보네이트의 환상형상부품 사출성형시 성형수축에 관한 연구)

  • Lee, Mina;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.300-305
    • /
    • 2013
  • Part shrinkage in injection molding is inevitable phenomenon. Thus, it is necessary not only study on the reducing part shrinkage but characterization of part shrinkage. In this study, part shrinkage in injection molded 2.5 dimensional annular shaped specimens has been studied using glass fiber reinforced PC. Annular shaped specimens were designed with various sizes of outer diameter and thickness. Injection temperature, packing time and packing pressure were selected for operational conditions. Profile variations of outer and inner diameters of molded specimens for various operational conditions were investigated. Sizes of outer and inner diameters of injection molded specimens were smaller than the sizes of mold. Part shrinkage decreased as outer diameter and thickness increased. Part shrinkage showed anisotropic behavior and it depended upon gate location. Subsequently, molded specimens were not circular but oval in shape, and showed the largest shrinkage in the direction of gate. It was realized that the mold design such as gate design is important to control the shape of molded products.

Effects of Multi-hole Baffle Thickness on Flow and Mixing Characteristics of Micro Combustor (다공배플 두께가 마이크로 연소기의 유동 및 혼합특성에 미치는 영향)

  • Kim, Won Hyun;Park, Tae Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.623-629
    • /
    • 2017
  • Flow structure and mixing characteristics in a micro combustor with a multi-hole baffle were numerically studied using the Reynolds stress model. The multi-hole baffle has geometrical features to produce multiple three-dimensional vortices inside combustion chamber. When the thickness of the baffle's geometrical factors changes, variations of vortical structures occur variously. Among these vortices, the vortex generated from the fuel stream exerts a critical influence on the mixing enhancement. The three-dimensional vortical structure, in its development state, was strongly dependent on the baffle thickness. In particular, as the baffle thickness decreases to values less than the diameter of the fuel hole, the jet stream in baffle holes changes from the parabolic to saddleback profile type. The sizes of recirculation zones inside combustion chamber and the mixing state were closely affected by the structure of the jet streams.