• Title/Summary/Keyword: Dimensional Variations

Search Result 632, Processing Time 0.032 seconds

Frost Behavior on a One-Dimensional Fin Considering Heat Conduction of Heat Exchanger Fins (열교환기 휜의 열전도를 고려한 1차원 휜에서의 착상 거동)

  • Kim, Jung-Soo;Kang, Soo-Jin;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.727-732
    • /
    • 2008
  • This paper presents a mathematical model to predict the behavior of frost formed on an one-dimensional fin of heat exchanger, considering fin heat conduction under frosting conditions. The computational domain consists of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with constant fin surface temperature assumed (Case B). The results indicate that for Case B, the frost thickness and heat transfer are overpredicted in most regions of the fin, as compared with those for Case A. In addition, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length after 30mm contributes insignificantly to heat transfer.

A Numerical Study on the Sloshing Characteristics in a Two-dimensional Rectangular Tank Using the Level Set Method (레벨셋법을 이용한 2 차원 사각 탱크 내부의 슬로싱 특성에 관한 수치적 연구)

  • Yoon, Hyun-Sik;Lee, Jung-Min;Chun, Hwan-Ho;Lee, Hyun-Goo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.132-143
    • /
    • 2008
  • The sloshing phenomena in a two-dimensional rectangular tank are investigated using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical results, which gives a good agreement. We present the streamlines pattern, free surface shape, maximum free surface elevation and pressure fluctuation patterns in the tank under the pitch and surge motions with various frequencies. These two different motions cause the different flow structures in the tank. The time variations of surface elevation and pressure at the different locations in the tank strongly depend on the exciting frequency of tank moving.

Design of Robust Face Recognition Pattern Classifier Using Interval Type-2 RBF Neural Networks Based on Census Transform Method (Interval Type-2 RBF 신경회로망 기반 CT 기법을 이용한 강인한 얼굴인식 패턴 분류기 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.755-765
    • /
    • 2015
  • This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng;Shi, Zhiguo;Zhang, Junhui;Zhang, Dingwen
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-313
    • /
    • 2019
  • This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.

Oil Spill Simulation by Coupling Three-dimensional Hydrodynamic Model and Oil Spill Model (3차원 동수역학모형-유류확산모형 연계를 통한 유출유 거동 모의)

  • Jung, Tae-Hwa;Son, Sangyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.474-484
    • /
    • 2018
  • In this study, a new numerical modeling system was proposed to predict oil spills, which increasingly occur at sea as a result of abnormal weather conditions such as global warming. The hydrodynamic conditions such as the flow velocity needed to calculate oil dispersion were estimated using a three dimensional hydrodynamic model based on the Navier-Stokes equation, which considered all of the physical variations in the vertical direction. This improved the accuracy compared to those estimated by the conventional shallow water equation. The advection-diffusion model for the spilled oil was combined with the hydrodynamic model to predict the movement and fate of the oil. The effects of absorption, weathering, and wind were also considered in the calculation process. The combined model developed in this study was then applied to various test cases to identify the characteristics of oil dispersion over time. It is expected that the developed model will help to establish initial response and disaster prevention plans in the event of a nearshore oil spill.

A Coupled Three-Dimensional Hydrodynamic and Water Quality Modeling of Yongdam Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 용담호 3차원 수리-수질 연동 모델링)

  • Chung, Se Woong;Lee, Jung Hyun;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.413-424
    • /
    • 2011
  • The study was aimed to evaluate the applicability of a three-dimensional (3D) hydrodynamic and water quality model, ELCOM-CAEDYM for Yongdam Reservoir, Korea. The model was applied for the simulations of hydrodynamics, thermal stratification processes, stream density flow propagation, and water quality parameters including dissolved oxygen, nutrients, organic materials, and algal biomass (chl-a) for the period of June to December, 2006. The field data observed at four monitoring stations (ST1~ST4) within the reservoir were used to validate the models performance. The model showed reasonable performance nevertheless low frequency boundary forcing data were provided, and well replicated the physical, chemical, and biological processes of the system. Simulated spatial and temporal variations of water temperature, nutrients, and chl-a concentrations were moderately consistent with the field observations. In particular, the model rationally reproduced the succession of different algal species; i.e., diatom dominant during spring and early summer, after then cyanobacteria dominant under warm and stratified conditions. ELCOM-CAEDYM is recommendable as a suitable coupled 3D hydrodynamic and water quality model that can be effectively used for the advanced water quality management of large stratified reservoirs in Korea.

Development and Application of Streamline Analysis Method (유선 분석법의 개발 및 적용)

  • Kim Tae Beom;Lee Chihyung;Cheong Jae-Yeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • In order to properly evaluate the spatio-temporal variations of groundwater flow, the data obtained in field experiments should be corroborated into numerical simulations. Particle tracking method is a simple simulation tool often employed in groundwater simulation to predict groundwater flow paths or solute transport paths. Particle tracking simulations visually show overall the particle flow path along the entire aquifer, but no previous simulation studies has yet described the parameter values at grid nodes around the particle path. Therefore, in this study, a new technical approach was proposed that enables acquisition of parameters associated with particle transport in grid nodes distributed in the center of the particle path in groundwater. Since the particle tracking path is commonly referred to as streamline, the algorithm and codes developed in this works designated streamline analysis method. The streamline analysis method can be applied in two-dimensional and three-dimensional finite element or finite difference grid networks, and can be utilized not only in the groundwater field but also in all fields that perform numerical modeling.

Perturbations of Zonal and Tesseral Harmonics on Frozen Orbits of Charged Satellites

  • Fawzy Ahmed Abd El-Salam;Walid Ali Rahoma;Magdy Ibrahim El-Saftawy;Ahmed Mostafa;Elamira Hend Khattab
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.87-106
    • /
    • 2024
  • The objective of this research is to address the issue of frozen orbits in charged satellites by incorporating geopotential zonal harmonics up to J6 and the initial tesseral harmonics. The employed model starts from the first normalized Hamiltonian to calculate specific sets of long-term frozen orbits for charged satellites. To explore the frozen orbits acquired, a MATHEMATICA CODE is developed. The investigation encompasses extensive variations in orbit altitudes by employing the orbital inclination and argument of periapsis as freezing parameters. The determined ranges ensuring frozen orbits are derived from the generated figures. Three-dimensional presentations illustrating the freezing inclination in relation to eccentricity, argument of periapsis, and semi-major axis parameters are presented. Additional three-dimensional representations of the phase space for the eccentricity vector and its projection onto the nonsingular plane are examined. In all investigated scenarios, the impacts of electromagnetic (EM) field perturbations on the freezing parameters of a charged satellite are demonstrated.

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.