• 제목/요약/키워드: Dimensional Optimization

Search Result 1,034, Processing Time 0.024 seconds

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

A Study on the Improvement of Shape Optimization associated with the Modification of a Finite Element (유한요소의 개선에 따른 형상최적화 향상에 관한 연구)

  • Sung, Jin-Il;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1408-1415
    • /
    • 2002
  • In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results.

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Optimization Analysis of the Shape and Position of a Submerged Breakwater for Improving Floating Body Stability

  • Sanghwan Heo;Weoncheol Koo;MooHyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Submerged breakwaters can be installed underneath floating structures to reduce the external wave loads acting on the structure. The objective of this study was to establish an optimization analysis framework to determine the corresponding shape and position of the submerged breakwater that can minimize or maximize the external forces acting on the floating structure. A two-dimensional frequency-domain boundary element method (FD-BEM) based on the linear potential theory was developed to perform the hydrodynamic analysis. A metaheuristic algorithm, the advanced particle swarm optimization, was newly coupled to the FD-BEM to perform the optimization analysis. The optimization analysis process was performed by calling FD-BEM for each generation, performing a numerical analysis of the design variables of each particle, and updating the design variables using the collected results. The results of the optimization analysis showed that the height of the submerged breakwater has a significant effect on the surface piercing body and that there is a specific area and position with an optimal value. In this study, the optimal values of the shape and position of a single submerged breakwater were determined and analyzed so that the external force acting on a surface piercing body was minimum or maximum.

Machine learning-enabled parameterization scheme for aerodynamic shape optimization of wind-sensitive structures: A-proof-of-concept study

  • Shaopeng Li;Brian M. Phillips;Zhaoshuo Jiang
    • Wind and Structures
    • /
    • v.39 no.3
    • /
    • pp.175-190
    • /
    • 2024
  • Aerodynamic shape optimization is very useful for enhancing the performance of wind-sensitive structures. However, shape parameterization, as the first step in the pipeline of aerodynamic shape optimization, still heavily depends on empirical judgment. If not done properly, the resulting small design space may fail to cover many promising shapes, and hence hinder realizing the full potential of aerodynamic shape optimization. To this end, developing a novel shape parameterization scheme that can reflect real-world complexities while being simple enough for the subsequent optimization process is important. This study proposes a machine learning-based scheme that can automatically learn a low-dimensional latent representation of complex aerodynamic shapes for bluff-body wind-sensitive structures. The resulting latent representation (as design variables for aerodynamic shape optimization) is composed of both discrete and continuous variables, which are embedded in a hierarchy structure. In addition to being intuitive and interpretable, the mixed discrete and continuous variables with the hierarchy structure allow stakeholders to narrow the search space selectively based on their interests. As a proof-of-concept study, shape parameterization examples of tall building cross sections are used to demonstrate the promising features of the proposed scheme and guide future investigations on data-driven parameterization for aerodynamic shape optimization of wind-sensitive structures.

Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

  • Kim, Keunjae;Tillig, Fabian;Bathfield, Nicolas;Liljenberg, Hans
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.392-405
    • /
    • 2014
  • SSPA experiences a growing interest in twin skeg ships as one attractive green ship solution. The twin skeg concept is well proven with obvious advantages for the design of ships with full hull forms, restricted draft or highly loaded propellers. SSPA has conducted extensive hull optimizations studies of LNG ships of different size based on an extensive hull data base with over 7,000 models tested, including over 400 twin skeg hull forms. Main hull dimensions and different hull concepts such as twin skeg and single screw were of main interest in the studies. In the present paper, one twin skeg and one single screw 170 K LNG ship were designed for optimally selected main dimension parameters. The twin skeg hull was further optimized and evaluated using SHIPFLOW FRIENDSHIP design package by performing parameter variation in order to modify the shape and positions of the skegs. The finally optimized models were then built and tested in order to confirm the lower power demand of twin skeg designed compaed with the signle screw design. This paper is a full description of one of the design developments of a LNG twin skeg hull, from early dimensional parameter study, through design optimization phase towards the confirmation by model tests.

A Study on the Optimal Design of a R-S-S-R Three Dimensional Mechanism (3次元 R-S-S-R 機構의 最適設計 에 관한 硏究)

  • 김호룡;김경률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.528-538
    • /
    • 1985
  • A R-S-S-R three dimensional mechanism is designed for crank-rocker type through the optimization technique. The nonlinear kinematic equation of the mechanism is formulated by adopting the concept of structural error and precision points. Taking this equation as an objective function, the required mechanism is optimally synthesized by the Fletcher-Davidon-Powell's method of optimization techniques. The structural errors due to the various positions of precision points are compared, and the results from the use of two penalty functions suggested respectively by Fiacco-McCormick and by Powell are also compared on their effectiveness. The mobility of the optimally designed mechanism is checked for the possibility of its motion, and when a mechanism is optimally designed, it is strongly suggested that the mobility must be checked on the designed mechanism.

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

Sensitivity Error Analyses with Respect to Shape Variables in a Two-Dimensional Cantilever Beam (2차원 외팔보의 형상변수에 대한 민감도 오차해석)

  • 박경진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • Sensitivity information is required in the optimal design process. In structural optimization, sensitivity calculation is a bottleneck due to its complexities and expensiveness. Various schemes have been proposed for the calculation. Analytic and finite difference methods are the most popular at the present time. However, they have advantages and disadvantages in different ways. Semi-anayltic method has been suggested to overcome the difficulties. In spite of the excellency, the semi-analytic method has been found to possess numerical error quite much with respect to shape variables. In this research, the error from each method is evaluated and compared using a shape variable. A two-dimensional beam is selected for an example since it has mathematical solution. An efficient method is suggested for the structural optimization which utilizes finite element method.