• 제목/요약/키워드: Dimension-reduction

검색결과 532건 처리시간 0.025초

Applications of response dimension reduction in large p-small n problems

  • Minjee Kim;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.191-202
    • /
    • 2024
  • The goal of this paper is to show how multivariate regression analysis with high-dimensional responses is facilitated by the response dimension reduction. Multivariate regression, characterized by multi-dimensional response variables, is increasingly prevalent across diverse fields such as repeated measures, longitudinal studies, and functional data analysis. One of the key challenges in analyzing such data is managing the response dimensions, which can complicate the analysis due to an exponential increase in the number of parameters. Although response dimension reduction methods are developed, there is no practically useful illustration for various types of data such as so-called large p-small n data. This paper aims to fill this gap by showcasing how response dimension reduction can enhance the analysis of high-dimensional response data, thereby providing significant assistance to statistical practitioners and contributing to advancements in multiple scientific domains.

On hierarchical clustering in sufficient dimension reduction

  • Yoo, Chaeyeon;Yoo, Younju;Um, Hye Yeon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.431-443
    • /
    • 2020
  • The K-means clustering algorithm has had successful application in sufficient dimension reduction. Unfortunately, the algorithm does have reproducibility and nestness, which will be discussed in this paper. These are clear deficits for the K-means clustering algorithm; however, the hierarchical clustering algorithm has both reproducibility and nestness, but intensive comparison between K-means and hierarchical clustering algorithm has not yet been done in a sufficient dimension reduction context. In this paper, we rigorously study the two clustering algorithms for two popular sufficient dimension reduction methodology of inverse mean and clustering mean methods throughout intensive numerical studies. Simulation studies and two real data examples confirm that the use of hierarchical clustering algorithm has a potential advantage over the K-means algorithm.

On robustness in dimension determination in fused sliced inverse regression

  • Yoo, Jae Keun;Cho, Yoo Na
    • Communications for Statistical Applications and Methods
    • /
    • 제25권5호
    • /
    • pp.513-521
    • /
    • 2018
  • The goal of sufficient dimension reduction (SDR) is to replace original p-dimensional predictors with a lower-dimensional linearly transformed predictor. The sliced inverse regression (SIR) (Li, Journal of the American Statistical Association, 86, 316-342, 1991) is one of the most popular SDR methods because of its applicability and simple implementation in practice. However, SIR may yield different dimension reduction results for different numbers of slices and despite its popularity, is a clear deficit for SIR. To overcome this, a fused sliced inverse regression was recently proposed. The study shows that the dimension-reduced predictors is robust to the numbers of the slices, but it does not investigate how robust its dimension determination is. This paper suggests a permutation dimension determination for the fused sliced inverse regression that is compared with SIR to investigate the robustness to the numbers of slices in the dimension determination. Numerical studies confirm this and a real data example is presented.

Comparative Study of Dimension Reduction Methods for Highly Imbalanced Overlapping Churn Data

  • Lee, Sujee;Koo, Bonhyo;Jung, Kyu-Hwan
    • Industrial Engineering and Management Systems
    • /
    • 제13권4호
    • /
    • pp.454-462
    • /
    • 2014
  • Retention of possible churning customer is one of the most important issues in customer relationship management, so companies try to predict churn customers using their large-scale high-dimensional data. This study focuses on dealing with large data sets by reducing the dimensionality. By using six different dimension reduction methods-Principal Component Analysis (PCA), factor analysis (FA), locally linear embedding (LLE), local tangent space alignment (LTSA), locally preserving projections (LPP), and deep auto-encoder-our experiments apply each dimension reduction method to the training data, build a classification model using the mapped data and then measure the performance using hit rate to compare the dimension reduction methods. In the result, PCA shows good performance despite its simplicity, and the deep auto-encoder gives the best overall performance. These results can be explained by the characteristics of the churn prediction data that is highly correlated and overlapped over the classes. We also proposed a simple out-of-sample extension method for the nonlinear dimension reduction methods, LLE and LTSA, utilizing the characteristic of the data.

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

A Note on Bootstrapping in Sufficient Dimension Reduction

  • Yoo, Jae Keun;Jeong, Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.285-294
    • /
    • 2015
  • A permutation test is the popular and attractive alternative to derive asymptotic distributions of dimension test statistics in sufficient dimension reduction methodologies; however, recent studies show that a bootstrapping technique also can be used. We consider two types of bootstrapping dimension determination, which are partial and whole bootstrapping procedures. Numerical studies compare the permutation test and the two bootstrapping procedures; subsequently, real data application is presented. Considering two additional bootstrapping procedures to the existing permutation test, one has more supporting evidence for the dimension estimation of the central subspace that allow it to be determined more convincingly.

Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm in a principal fitted component model

  • Chaeyoung, Lee;Jae Keun, Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.721-733
    • /
    • 2022
  • In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candidate set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter estimation in dimension reduction which signals the need of numerical computation. The numerical computation can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted numerical studies to compare the two methods by computing the results of sequential dimension testing and trace correlation values where we can compare the performance in determining dimension and estimating the basis. We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in dimension determination, while sequential candidate set algorithm is better in basis estimation when conducting dimension reduction. We also applied the methods in real data which derived the same result.

스트리밍 데이터에 대한 최소제곱오차해를 통한 점층적 선형 판별 분석 기법 (Incremental Linear Discriminant Analysis for Streaming Data Using the Minimum Squared Error Solution)

  • 이경훈;박정희
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.69-75
    • /
    • 2018
  • 시간에 따라 순차적으로 들어오는 스트리밍 데이터에서는 전체 데이터 셋을 한꺼번에 모두 이용하는 배치 학습에 기반한 차원축소 기법을 적용하기 어렵다. 따라서 스트리밍 데이터에 적용하기 위한 점층적 차원 감소 방법이 연구되어왔다. 이 논문에서는 최소제곱오차해를 통한 점층적 선형 판별 분석법을 제안한다. 제안 방법은 분산행렬을 직접 구하지 않고 새로 들어오는 샘플의 정보를 이용하여 차원 축소를 위한 사영 방향을 점층적으로 업데이트한다. 실험 결과는 이전에 제안된 점층적 차원축소 알고리즘과 비교하여 이 논문에서 제안한 방법이 더 효과적인 방법임을 입증한다.

PCA를 적용한 결함 심각도 기반 차원 축소 모델 (Defect Severity-based Dimension Reduction Model using PCA)

  • 권기태;이나영
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제15권1호
    • /
    • pp.79-86
    • /
    • 2019
  • 데이터의 차원축소는 요소들의 공통성을 파악해 영향력 있는 중요한 특징 요소를 추출하여 간소화함으로써 복잡함을 줄이고 다중 공선성 문제를 해결한다. 그리고 중복 및 노이즈 검출을 함으로써 불필요함을 줄인다. 이에 본 논문에서는 PCA(Prinicipal Component Analysis)을 적용한 결함 심각도 기반 차원 축소 모델을 제안한다. 제안된 모델은 결함 심각도가 있는 NASA 데이터 세트인 PC4에 적용하여 결함 심각도에 영향을 주는 속성의 차원수를 검증한다. 그 다음 데이터의 차원을 축소한 후 비교 분석한다. 실험결과, PC4의 적합한 차원수는 2~3개였고 그룹화를 통해 차원 축소가 가능한 것을 보였다.

Classification of Microarray Gene Expression Data by MultiBlock Dimension Reduction

  • Oh, Mi-Ra;Kim, Seo-Young;Kim, Kyung-Sook;Baek, Jang-Sun;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.567-576
    • /
    • 2006
  • In this paper, we applied the multiblock dimension reduction methods to the classification of tumor based on microarray gene expressions data. This procedure involves clustering selected genes, multiblock dimension reduction and classification using linear discrimination analysis and quadratic discrimination analysis.