• Title/Summary/Keyword: Dimension optimization

Search Result 195, Processing Time 0.028 seconds

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

Robust Optimization Design of Overhead Crane with Constraint using the Characteristic Functions (특성함수를 이용한 제한조건이 있는 천장크레인의 강건최적설계)

  • 홍도관;최석창;안찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • The correlation between the object function and the design parameter is shown on this paper by using the characteristic function for the mixed result of the structural analysis, the buckling analysis and the table of orthogonal array according to the original overhead crane's dimensional change. About the above two functions, the effectiveness of design change according to the change of design parameters could be estimated. Also, the overhead crane's weight is reduced up to 10.55 percent maintaining the structural stability according to the thickness of plate.

Optimization of the Aluminum Door Impact Beam Considering the Side Door Strength and the Side Impact Capability (옆문강도 및 측면충돌 성능을 고려한 알루미늄 도어 임펙트빔 최적화 연구)

  • Yang, Ji-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2025-2030
    • /
    • 2011
  • Recently, several vehicle manufacturers have used the aluminum side door impact beam in order to reduce the vehicle weight and costs. But, the aluminum impact beam may cause the reduction of the side door strength and the side impact capability. Therefore, this paper optimized the section dimension and section shape of the side door impact beam to satisfy the legislation of the side door strength and maintain the side impact capability as well as steel impact beam

Design Optimization of Silicon-based Junctionless Fin-type Field-Effect Transistors for Low Standby Power Technology

  • Seo, Jae Hwa;Yuan, Heng;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1497-1502
    • /
    • 2013
  • Recently, the junctionless (JL) transistors realized by a single-type doping process have attracted attention instead of the conventional metal-oxide-semiconductor field-effect transistors (MOSFET). The JL transistor can overcome MOSFET's problems such as the thermal budget and short-channel effect. Thus, the JL transistor is considered as great alternative device for a next generation low standby power silicon system. In this paper, the JL FinFET was simulated with a three dimensional (3D) technology computer-aided design (TCAD) simulator and optimized for DC characteristics according to device dimension and doping concentration. The design variables were the fin width ($W_{fin}$), fin height ($H_{fin}$), and doping concentration ($D_{ch}$). After the optimization of DC characteristics, RF characteristics of JL FinFET were also extracted.

The Size Optimization Design of Crane using the Table of Orthogonal Array and Finite Element Analysis (직교배열표와 유한요소해석을 이용한 크레인의 치수최적설계)

  • 홍도관;최석창;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1471-1474
    • /
    • 2003
  • The correlation between the object function and the design parameter is shown on this paper by using the characteristic function for tile mixed result of the structure analysis. tile buckling analysis and the table of orthogonal array according to the original crane's dimensional change. About the above two object functions, the effective of design change according to the change of design parameters could be estimated. Also, the crane's weight is reduced up to 20.58 percent maintaining the structural stability according to the thickness of plate.

  • PDF

Robust Optimization Design of Overhead Crane with Constraint Using the Characteristic Functions

  • Hong, Do-Kwan;Choi, Seok-Chang;Ahn, Chan-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.12-17
    • /
    • 2006
  • This study uses a characteristic function to explain correlations between the objective function and design variables. For the use, structural analysis and buckling analysis are carried out. the dimensional change of an original overhead crane is made based on the table of orthogonal array. For two functions or more, the effectiveness of design change can be evaluated in accordance with change in design parameters. Also, the overhead crane's weight is reduced by up to 10.55 percent while its structural stability maintained.

Analysis on a Combined Model of Competitive Bidding and Strategic Maintenance Scheduling of Generating Units (발전력의 경쟁적 입찰전략과 전략적 보수계획에 대한 결합모형 연구)

  • Lee, Kwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.9
    • /
    • pp.392-398
    • /
    • 2006
  • Maintenance scheduling of generating units (MSU) has strategic dimension in an oligopolistic market. Strategic MSU of gencos can affect a market power through capacity withdrawal which is related to bidding strategy in an generation wholesale market. This paper presents a combined framework that models the interrelation between competitive bidding and strategic MSU. The combined game model is represented as some sub-optimization problems of a market operator (MO) and gencos, that should be solved through bi-level optimization scheme. The gradient method with dual variables is also adopted to calculate a Nash Equilibrium (NE) by an iterative update technique in this paper. Illustrative numerical example shows that NE of a supply function equilibrium is obtained properly by using proposed solution technique. The MSU made by MO is compared with that by each genco and that under perfect competition market.

Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화)

  • Kang Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

Warping thermal deformation constraint for optimization of a blade stiffened composite panel using GA

  • Todoroki, Akira;Ozawa, Takumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • This paper deals with the optimization of blade stiffened composite panels. The main objective of the research is to make response surfaces for the constraints. The response surface for warping thermal deformation was previously made for a fixed dimension composite structure. In this study, the dimensions of the blade stiffener were treated as design variables. This meant that a new response surface technique was required for the constraints. For the response surfaces, the lamination parameters, linear thermal expansions and dimensions of the structures were used as variables. A genetic algorithm was adopted as an optimizer, and an optimal result, which satisfied two constraints, was obtained. As a result, a new response surface was obtained, for predicting warping thermal deformation.

A Study on the Optimal Design of Represtressed Preflex Beams (리프리스트레스트 프리플렉스 합성형의 최적설계에 관한 연구)

  • Jo, Byung-Wan;Kim, Jung-Ho;Cho, Tae-Jun;Kim, Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.712-717
    • /
    • 1998
  • Represtressed preflex beams do not allow tensile stress under service load by introducing additional prestressing at the lower concrete of beams. In this study, optimal design of represetressed preflex beams are numerically investigated. Design variables are dimension of plate girder. Object function is the total weight of plate girder. Constraints of the stress of plate girder and upper and lower concrete flange and lower and upper bounds on the design variables are imposed. Structural analysis is performed by D.A.R.P.(Design and Analysis of Represtressed Preflex beams). For numerical optimization, ADS(Garret N. Vanderplaats) program is used. From result of application examples, optimum designs of different cases are successfully obtained. The design program developed in this study seems efficient and robust for the optimization of represtressed preflex beams.

  • PDF