• Title/Summary/Keyword: Digital relief model

Search Result 50, Processing Time 0.029 seconds

Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry (수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • Three-dimensional geo-spatial information is important for the efficient use and management of the country and the three-dimensional expression and analysis of urban projects, such as urban plans devised by local governments and urban management. Thanks to the revitalization of the geo-spatial information service industry, it is now being variously used not only in public but also private areas. For the creation of high-guiltily three-dimensional geo-spatial information, emphasis should be placed on not only the quality of the source image and three-dimensional geo-spatial model but also the level of visualization, such as level of detail and texturing. However, in the case of existing three-dimensional geo-spatial information, its establishment process is complicated and its data are not updated frequently enough, as it uses ready-created digital maps. In addition, as it uses Ortho Images, the images exist Relief displacement. As a result, the visibility is low and the three-dimensional models of artificial features are simplified to reach LoD between 2 and 3, making the images look less realistic. Therefore, this paper, analyzed the quality of three-dimensional geo-spatial information created using the three-dimensional modeling technique were applied using Digital photogrammetry technique, using digital aerial photo images by an existing large-format digital camera and multi-looking camera. The analysis of the accuracy of visualization information of three-dimensional models showed that the source image alone, without other visualization information, secured the accuracy of 84% or more and that the establishment of three-dimensional spatial information carried out simultaneously with filming made it easier to gain the latest data. The analysis of the location accuracy of true Ortho images used in the work process showed that the location accuracy was better than the allowable horizontal position accuracy of 1:1,000 digital maps.

Assessment of DEM Generated by Stereo C-band and X-band SAR images using Radargrammetry (Radargrammetry를 이용한 C-밴드 및 X-밴드 SAR 위성영상의 DEM 생성 평가)

  • Song, Yeong Sun;Kim, Gi Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.109-116
    • /
    • 2013
  • To extract the 3D geometric information from SAR(Synthetic Aperture Radar) images, two different techniques, interferometric SAR and radargrammetry, have been widely used. InSAR is most widely used for the generation of precise DEM(Digital Elevation Model) until now. But, Interferometric SAR requires severe temporal correlation over areas covered with vegetation and high relief areas. Because radargrammetry is less sensible to temporal correlation, it can provide better results than interferometric SAR in certain, especially X-band SAR. In this paper, we assess the properties of DEMs generated by radargrammetry using stereo C-band RADARSAT-1 images and X-band TerraSAR-X images.

Detection of the morphologic change on tidal flat using intertidal DEMs

  • Lee, Yoon-Kyung;Ryu, Joo-Hyung;Eom, Jin-Ah;Kwak, Joon-Young;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.247-249
    • /
    • 2006
  • The objective of this study is to detect a inter-tidal topographic change in a decade. Waterline extraction is a one of widely used method to generate digital elevation model (DEM) of tidal flat using multi-temporal optical data. This method has been well known that it is possible to construct detailed topographic relief of tidal flat using waterlines In this study, we generated two sets of tidal flat DEM for the southern Ganghwado. The DEMs showed that the Yeongjongdo northern tidal flat is relatively high elevation with steep gradients. The Ganghwado southern tidal flat is relatively low elevation and gentle gradients. To detect the morphologic change of tidal flat during a decade, we compared between early 1990's DEM and early 2000's DEM. Erosion during a decade is dominant at the west of southern Ganghwado tidal flat, while sedimentation is dominant at the wide channel between the southern Ganghwado and Yeongjongdo tidal flats. This area has been commonly affected by high current and sedimentation energy. Although we are not able to verify the accuracy of the changes in topography and absolute volume of sediments, this result shows that DEM using waterline extraction method is an effective tool for long term topographic change estimation.

  • PDF

ANALYSIS OF THE CHARACTERISTICS ABOUT GYEONG-GANG FAULT ZONE THROUGH REMOTE SENSING TECHNIQUES

  • Hwang, Jin-Kyong;Choi, Jong-Kuk;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.196-199
    • /
    • 2008
  • Lineament is defined generally as a linear feature or pattern on interpretation of a satellite image and indicates the geological structures such as faults and fractures. For this reason, a lineament extraction and analysis using remote sensing images have been widely used for mapping large areas. The Gyeong-gang Fault is a NNE trending structure located in Gangwon-do and Kyeonggi-do district. However, a few geological researches on that fault have been carried out and its trace or continuity is ambiguous. In this study, we investigate the geologic features at Gyeong-gang Fault Zone using LANDSAT ETM+ satellite image and SRTM digital elevation model. In order to extract the characteristics of geologic features effectively, we transform the LANDSAT ETM+ image using Principal Component Analysis (PCA) and create a shade relief from SRTM data with various illumination angles. The results show that it is possible to identify the dimensions and orientations of the geologic features at Gyeong-gang Fault Zone using remote sensing data. An aerial photograph interpretation and a field work will be future tasks for more accurate analysis in this area.

  • PDF

A Study on Progressive Sampling with Distinct Morphologic Features (지성선을 이용한 밀도증가식 표본추출법에 관한 연구)

  • 조규전
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 1988
  • Digital Terrain Model is composed of two basic elements, namely, sampling and interpolation. They represent the procurement of data and the geometric reconstruction of terrain relief respectively. For evaluation DTM data, following two paremeters appear to be the most important factor, that is, the accuracy and efficiency and, in particular, the break point information significantly affect to the accuracy of DTM data. The main objective of this study is to improve the accuracy and efficiency of DTM by applying Progressive Sampling with distinct morphologic information. In this study, the total of 240 individual numerical tests has been implemented and the appropriate computer program is also developed for the test. The result of investigation shows that the Progressive Sampling with break point information improves the accuracy of DTM by 30 percent approximately.

  • PDF

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Automated Extraction of Orthorectified Building Layer from High-Resolution Satellite Images (고해상도 위성영상으로부터 건물 정위 레이어 자동추출)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.339-353
    • /
    • 2023
  • As the availability of high-resolution satellite imagery increases, improvement of positioning accuracy of satellite images is required. The importance of orthorectified images is also increasing, which removes relief displacement and establishes true localization of man-made structures. In this paper, we performed automated extraction of building rooftops and total building areas within original satellite images using the existing building height database. We relocated the rooftop sin their true position and generated an orthorectified building layer. The extracted total building areas were used to blank out building areas and generate true orthographic non-building layer. A final orthorectified image was provided by overlapping the building layer and non-building layer.We tested the proposed method with KOMPSAT-3 and KOMPSAT-3A satellite images and verified the results by overlapping with a digital topographical map. Test results showed that orthorectified building layers were generated with a position error of 0.4m.Through the proposed method, the feasibility of automated true orthoimage generation within dense urban areas was confirmed.

Updating DEM for Improving Geomorphic Details (미기복 지형 표현을 위한 DEM 개선)

  • Kim, Nam-Shin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.64-72
    • /
    • 2009
  • The method to generate a digital elevation model(DEM) from contour lines causes a problem in which the low relief landform cannot be clearly presented due to the fact that it is significantly influenced by the expression of micro landform elements according to the interval of contours. Thus, this study attempts to develop a landcover burning method that recovers the micro relief landform of the DEM, which applies buffering and map algebra methods by inputting the elevation information to the landcover. In the recovering process of the micro landform, the DEM was recovered using the buffering method and elevation information through the map algebra for the landcover element for the micro landform among the primary DEM generation, making landcover map, and landcover elements. The recovering of the micro landform was applied based on stream landforms. The recovering of landforms using the buffering method was performed for the bar, which is a polygonal element, and wetland according to the properties of concave/convex through generating contours with a uniform interval in which the elevation information applied to the recovered landform. In the case of the linear elements, such as bank, road, waterway, and tributary, the landform can be recovered by using the elevation information through applying a map algebra function. Because the polygonal elements, such as stream channel, river terrace, and artificial objects (farmlands) are determined as a flat property, these are recovered by inputting constant elevation values. The results of this study were compared and analyzed for the degree of landform expression between the original DEM and the recovered DEM. In the results of the analysis, the DEM produced by using the conventional method showed few expressions in micro landform elements. The method developed in this study well described wetland, bar, landform around rivers, farmland, bank, river terrace, and artificial objects. It can be expected that the results of this study contribute to the classification and analysis of micro landforms, plain and the ecology and environment study that requires the recovering of micro landforms around streams and rivers.

  • PDF

A Technique Assessing Geological Lineaments Using Remotely Sensed Data and DEM : Euiseons Area, Kyungsang Basin (원격탐사자료와 수치표고모형을 이용한 지질학적 선구조 분석기술: 경상분지 의성지역을 중심으로)

  • 김원균;원중선;김상완
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.139-154
    • /
    • 1996
  • In order to evaluate the sensor`s look direction bias in the Landsat TM image and to estimate trends of primary geological lineaments, we have attempted to systematically compare lineaments in TM image, relief shadowed DEM's, and actual lineaments of geologic and topographic map through the Hough transform technique. Hough transform is known to be very effective to estimate the trend of geological lineaments, and help us to obtain the true trends of lineaments. It is often necessary to compensate the preferential enhancements of terrain lineaments in a TM image occurred by to look direction bias, and that can be achieved by utilizing an auxiliary data. In this study, we have successfully adopted the relief shadowed DEM in which the illuminating azimuth angle is perpendicular to look direction of a TM image for assessing true trends of geological lineaments. The results also show that the sum of four relief shadowed DEM's directional components can possibly be used as an alternative. In Euiseong-gun area where Sindong Group and Mayans Group are mainly distributed, geological lineaments trending $N5^{\circ}$~$10^{\circ}$W are dominant, while those of $N55^{\circ}$~$65^{\circ}$ W are major trends in Cheongsong-gun area where Hayang Group, Yucheon Group and Bulguksa Granite are distributed. Using relief shadowed DEM as an auxiliary data, we found the $N55^{\circ}$~$65^{\circ}$ W lineaments which are not cleanly observed in TM image over Euiseong-gun area. Compared with the trend of Gumchon and Gaum strike-slip faults, these lineaments are considered to be an extension of the faults. Therefore these strike-slip faults possibly extend up to Sindong Group in the northwest parts in the study area.

A Study on Automated Lineament Extraction with Respect to Spatial Resolution of Digital Elevation Model (수치표고모형 공간해상도에 따른 선구조 자동 추출 연구)

  • Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.439-450
    • /
    • 2018
  • The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.