• Title/Summary/Keyword: Digital hearing Aid

Search Result 68, Processing Time 0.025 seconds

Investigating the Effects of Hearing Loss and Hearing Aid Digital Delay on Sound-Induced Flash Illusion

  • Moradi, Vahid;Kheirkhah, Kiana;Farahani, Saeid;Kavianpour, Iman
    • Journal of Audiology & Otology
    • /
    • v.24 no.4
    • /
    • pp.174-179
    • /
    • 2020
  • Background and Objectives: The integration of auditory-visual speech information improves speech perception; however, if the auditory system input is disrupted due to hearing loss, auditory and visual inputs cannot be fully integrated. Additionally, temporal coincidence of auditory and visual input is a significantly important factor in integrating the input of these two senses. Time delayed acoustic pathway caused by the signal passing through digital signal processing. Therefore, this study aimed to investigate the effects of hearing loss and hearing aid digital delay circuit on sound-induced flash illusion. Subjects and Methods: A total of 13 adults with normal hearing, 13 with mild to moderate hearing loss, and 13 with moderate to severe hearing loss were enrolled in this study. Subsequently, the sound-induced flash illusion test was conducted, and the results were analyzed. Results: The results showed that hearing aid digital delay and hearing loss had no detrimental effect on sound-induced flash illusion. Conclusions: Transmission velocity and neural transduction rate of the auditory inputs decreased in patients with hearing loss. Hence, the integrating auditory and visual sensory cannot be combined completely. Although the transmission rate of the auditory sense input was approximately normal when the hearing aid was prescribed. Thus, it can be concluded that the processing delay in the hearing aid circuit is insufficient to disrupt the integration of auditory and visual information.

The Effects of Hearing Aid Digital Noise Reduction and Directionality on Acceptable Noise Level

  • Ahmadi, Roghayeh;Jalilvand, Hamid;Mahdavi, Mohammad Ebrahim;Ahmadi, Fatemeh;Baghban, Ali Reza Akbarzade
    • Clinical and Experimental Otorhinolaryngology
    • /
    • v.11 no.4
    • /
    • pp.267-274
    • /
    • 2018
  • Objectives. Two main digital signal processing technologies inside the modern hearing aid to provide the best conditions for hearing aid users are directionality (DIR) and digital noise reduction (DNR) algorithms. There are various possible settings for these algorithms. The present study evaluates the effects of various DIR and DNR conditions (both separately and in combination) on listening comfort among hearing aid users. Methods. In 18 participants who received hearing aid fitting services from the Rehabilitation School of Shahid Beheshti University of Medical Sciences regularly, we applied acceptable noise level (ANL) as our subjective measure of listening comfort. We evaluated both of these under six different hearing aid conditions: omnidirectional-baseline, omnidirectional-broadband DNR, omnidirectional-multichannel DNR, directional, directional-broadband DNR, and directional-multichannel DNR. Results. The ANL results ranged from -3 dB to 14 dB in all conditions. The results show, among all conditions, both the omnidirectional-baseline condition and the omnidirectional-broadband DNR condition are the worst conditions for listening in noise. The DIR always reduces the amount of noise that patients received during testing. The DNR algorithm does not improve listening in noise significantly when compared with the DIR algorithms. Although both DNR and DIR algorithms yielded a lower ANL, the DIR algorithm was more effective than the DNR. Conclusion. The DIR and DNR technologies provide listening comfort in the presence of noise. Thus, user benefit depends on how the digital signal processing settings inside the hearing aid are adjusted.

64 Channel Noise Masking Digital Hearing Aid Firmware Development (64채널 소음 차폐 디지털 보청기 펌웨어 개발)

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2012
  • This paper introduces noise masking algorithm for 64 channel digital hearing aid. 125 Hz spectral resolution is maintained for 64 channels from 125 Hz to 8000 Hz. The same spectral masking processing effects as the cochlea are considered and applied for the present hearing aid noise reduction processing algorithm. Theoretical algorithm has been ported into assembler language program software and been embedded into a DSP IC chip for the digital hearing aid. Some parts of noise masking software program code are explained, and the results of the real-time noise reduction are verified by electro-acoustic measurements.

Investigating the Effects of Hearing Loss and Hearing Aid Digital Delay on Sound-Induced Flash Illusion

  • Moradi, Vahid;Kheirkhah, Kiana;Farahani, Saeid;Kavianpour, Iman
    • Korean Journal of Audiology
    • /
    • v.24 no.4
    • /
    • pp.174-179
    • /
    • 2020
  • Background and Objectives: The integration of auditory-visual speech information improves speech perception; however, if the auditory system input is disrupted due to hearing loss, auditory and visual inputs cannot be fully integrated. Additionally, temporal coincidence of auditory and visual input is a significantly important factor in integrating the input of these two senses. Time delayed acoustic pathway caused by the signal passing through digital signal processing. Therefore, this study aimed to investigate the effects of hearing loss and hearing aid digital delay circuit on sound-induced flash illusion. Subjects and Methods: A total of 13 adults with normal hearing, 13 with mild to moderate hearing loss, and 13 with moderate to severe hearing loss were enrolled in this study. Subsequently, the sound-induced flash illusion test was conducted, and the results were analyzed. Results: The results showed that hearing aid digital delay and hearing loss had no detrimental effect on sound-induced flash illusion. Conclusions: Transmission velocity and neural transduction rate of the auditory inputs decreased in patients with hearing loss. Hence, the integrating auditory and visual sensory cannot be combined completely. Although the transmission rate of the auditory sense input was approximately normal when the hearing aid was prescribed. Thus, it can be concluded that the processing delay in the hearing aid circuit is insufficient to disrupt the integration of auditory and visual information.

Development of Directional Digital Hearing Aid Performance Testing System (지향성 보청기 성능 검사 장치 개발)

  • Jang, Soon-Suck;Kwon, You-Jung;Lee, Je-Hyeong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.81-88
    • /
    • 2006
  • The most recent trend on digital hearing aid is to increase the ratio of signal to noise by directivity or to develop noise reduction algorithm inside DSP IC chip. This paper designed, fabricated and tested a digital hearing aid directivity testing device in which a micro-mouse-like the stepping motor with a speaker rotates around an examinant. Both ears of the examinant were fixed with ITE hearing aids in order to respond to receiving sound. The experimental results were compared with those of a boundary element method program for verification. The diameter of the directivity testing device was 2 m and the micro-mouse was precisely controlled by PICBASIC micro processor.

Development of Directional Digital Hearing Aid Performance Testing System (지향성 보청기 성능 검사 장치 개발)

  • Jarng, Soon-Suck;Kwon, You-Jung;Lee, Je-Hyeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.469-474
    • /
    • 2005
  • The most recent trend on digital hearing aid is to increase the ratio of signal to noise by directivity or to develop noise reduction algorithm inside DSP IC chip. This paper designed, fabricated and tested a digital hearing aid directivity testing device in which a micro-mouse-1ike the stepping motor with a speaker rotates around an examinant. Both ears of the examinant were fixed with ITE hearing aids in order to response to receiving sound. The experimental results were compared with a boundary element method program for verification. The diameter of the directivity testing device was 2 [m] and the micro-mouse was precisely controlled by PICBASIC micro processor.

  • PDF

Digital Hearing Aid DSP Chip Parameter Fitting Optimization

  • Jarng, Soon-Suck;Kwon, You-Jung;Lee, Je-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1820-1825
    • /
    • 2005
  • DSP chip parameters of a digital hearing aid (HA) should be optimally selected or fitted for hearing impaired persons. The more precise parameter fitting guarantees the better compensation of the hearing loss (HL). Digital HAs adopt DSP chips for more precise fitting of various HL threshold curve patterns. A specific DSP chip such as Gennum GB3211 was designed and manufactured in order to match up to about 4.7 billion different possible HL cases with combination of 7 limited parameters. This paper deals with a digital HA fitting program which is developed for optimal fitting of GB3211 DSP chip parameters. The fitting program has completed features from audiogram input to DSP chip interface. The compensation effects of the microphone and the receiver are also included. The paper shows some application examples.

  • PDF

Digital Hearing Aid DSP Chip Parameter Fitting Optimization (디지털 보청기 DSP Chip 파라미터 적합 최적화)

  • Jarng Soon-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.530-538
    • /
    • 2006
  • DSP chip parameters of a digital hearing aid (HA) should be optimally selected or fitted for hearing impaired persons. The more precise parameter fitting guarantees the better compensation of the hearing loss (HL). Digital HAs adopt DSP chips for more precise fitting of various HL threshold curve patterns. A specific DSP chip such as Gennum GB3211 was designed and manufactured in order to match up to about 4.7 billion different possible HL cases with combination of 7 limited parameters. This paper deals with a digital HA fitting program which is developed for optimal fitting of GB3211 DSP chip parameters. The fitting program has completed features from audiogram input to DSP chip interface. The compensation effects of the microphone and the receiver are also included. The paper shows some application examples.