• Title/Summary/Keyword: Digital hand

Search Result 917, Processing Time 0.03 seconds

Microscopic Approach of Mass Involving Neurovascular Pedicle in the Hand (신경혈관 줄기를 침범한 수부종양의 미세현미경적 접근)

  • Hwang, Min-Kyu;Hwang, So-Min;Lim, Kwang-Ryeol;Jung, Yong-Hui;Song, Jennifer Kim
    • Archives of Reconstructive Microsurgery
    • /
    • v.21 no.2
    • /
    • pp.86-91
    • /
    • 2012
  • Purpose: Mass can compress around tissue and cause deviation of normal anatomical structures. Often, mass grows toward neurovascular pedicle and encircles depending on the nature of mature mass. Neglecting neurovascular involvement of the mass is a serious problem not to be overlooked. Authors have performed microscopic approach regarding mass involving the neurovascular pedicle in the hand. Materials and Methods: From January 2007 through February 2012, retrospective analysis for nine cases of mass involving neurovascular pedicles was done. Patients were evaluated preoperatively by ultrasonography or MRI and checked intraoperative finding. Masses were evaluated by site, preoperative evaluation, involved neurovascular pedicle, histopathologic diagnosis, complication, and recurrence. Results: The site of mass involving neurovascular pedicles was 4 cases on the wrist, 2 cases on the palm, 2 cases on the finger, 1 case on the hand dorsum. Involved neurovascular pedicles were 3 radial arteries and nerves, 3 proper digital arteries and nerves, 1 radial artery, 1 superficial branch of radial nerve, 1 common digital artery and nerve. The histopathologic diagnosis of mass were 3 ganglions, 2 giant cell tumors, 2 epidermal cysts, 1 fibroma, and 1 benign spindle tumor. There were 2 cases of recurrence and secondary excisions were performed. Conclusion: Neurovascular pedicle injury can lead to serious complication like sensory and motor disorders, distal part ischemia, and so on. In case of mass suspected neurovascular invasion, accurate preoperative evaluation such as ultrasonography or MRI is necessary. To prevent any neurovascular related complication during mass excision, delicate surgical technique using a microscope becomes essential.

  • PDF

A Study on the Peg-in-hole of chamferless Parts using Force/Moment/Vision Sensor (힘/모멘트/비전센서를 사용한 챔퍼가 없는 부품의 삽입작업에 관한 연구)

  • Back, Seung-Hyop;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.119-122
    • /
    • 2001
  • This paper discusses the peg-in-hole task of chamferless parts using force/moment/vision sensors. The directional error occurring during the task are categorized into two cases according to the degree of initial errors, And different Mechanical analysis has been accomplished for each cases. This paper proposes an algorithm which enables to reduce intial directional error using digital Images acquired from hand-eyed vision sensor, And to continue the task even with the large directional error by adjusting the error using digital image processing. The effectiveness of the algorithm has been demonstrated through experimentation using 5-axis robot equipped with a developed controller force/moment sensor and color digital camera on its hand.

  • PDF

Analysis of skin movement using MR images (자기공명 영상을 이용한 피부 움직임 분석에 관한 연구)

  • ;Natsuki Miyata;Makiko Kouchi;Masaaki Mochimaru
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.719-722
    • /
    • 2003
  • This paper describes a novel experiment that measures the skin movement of a hand based on MR (magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images. and (3) registration of the 3D models. The results of registration are used to trace the skin movement with respect to underlying bone motions by measuring the positions of the surface markers.

  • PDF

From Exoscope into the Next Generation

  • Nishiyama, Kenichi
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.3
    • /
    • pp.289-293
    • /
    • 2017
  • An exoscope, high-definition video telescope operating monitor system to perform microsurgery has recently been proposed an alternative to the operating microscope. It enables surgeons to complete the operation assistance by visualizing magnified images on a display. The strong points of exoscope are the wide field of view and deep focus. It minimized the need for repositioning and refocusing during the procedure. On the other hand, limitation of magnifying object was an emphasizing weak point. The procedures are performed under 2D motion images with a visual perception through dynamic cue and stereoscopically viewing corresponding to the motion parallax. Nevertheless, stereopsis is required to improve hand and eye coordination for high precision works. Consequently novel 3D high-definition operating scopes with various mechanical designs have been developed according to recent high-tech innovations in a digital surgical technology. It will set the stage for the next generation in digital image based neurosurgery.

A Study on Design of Underactuated Robot Hand driven by Shape Memory Alloy (형상기억합금 Underactuated 로봇 핸드의 설계에 관한 연구)

  • Kim, Gwang-Ho;Shin, Sang-Ho;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • The lightweight and compact actuator with high power is required to perform motion with multiple degrees of freedom. To reduce the size and inertia of a robot manipulator, the mechanical transmission system is used. The shape memory alloy(SMA) is similar to the muscle-tendon-bone network of a human hand. However, there are some drawback and nonlinearity, such as the hysteresis and the stress dependence. In this paper, the design of the underactuated robot hand is studied. The 3-finger dexterous hand is driven by the SMA actuator using segmental mechanism. This digital approach enables to overcome the nonlinearity of SMA wire. The translational displacement of SMA actuator required to bend a phalanx of the underactuated robot hand is estimated and the bending angle of the underactuated robot hand according to input displacement of SMA actuator is predicted by the multi-body dynamic analysis.

Flower of Digital Broadcasting DMB (디지털방송의 꽃 DMB(Digital Multimedia Broadcasting))

  • Cha, Hwan-Ju
    • Journal of the Korean Professional Engineers Association
    • /
    • v.38 no.3
    • /
    • pp.6-12
    • /
    • 2005
  • DMB(Digital Multimedia Broadcasting) Service was started, DMB enables people on the move to enjoy seamless video streaming, theater-quality audio and data through a hand-held digital device much like a handset or an in-car terminal. Realization of any-time, any-where, any-device, any-one DMB Service is needed for the government effective policy, Technical R&D and Standization, Corporate investment.

  • PDF

Effects of a Digital Pegboard Training Program With Visual and Auditory Feedback on Hand Function and Visual Perception in Patients With Stroke (시각, 청각 피드백을 이용한 디지털 페그보드 훈련 작업치료 프로그램이 뇌졸중 환자의 손 기능 및 시·지각에 미치는 영향)

  • Hong, Jang-Woo;Yoo, Chan-Uk;Gang, Mi-Yeong;Chang, Ki-Yeon
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.4
    • /
    • pp.85-97
    • /
    • 2022
  • Purpose : This study aimed to investigate the effects of a digital pegboard training program with visual and auditory feedback on hand function and visual perception in stroke patients. Methods : Twenty two participants were randomly assigned to an experimental or control group. The experimental group received training using a digital pegboard training program with visual and auditory feedback (n=11), while traditional occupational therapy was administered to the control group (n=11). Hand function was assessed before and after the intervention using the Nine-Hole Peg Test and manual function test (MFT), while visual perception was assessed using the Motor-Free Visual Perception Test-3rd edition (MVPT-3). Results : Following the intervention, both the experimental and control groups showed significant improvements in performance in the Nine-Hole Peg Test and MVPT-3 (p<.05). The improvement on both tests was significantly greater in the experimental group than in the control group (p<.05). Conclusion : The results suggest that digital pegboard training with visual and auditory feedback may improve hand function and visual perception in stroke patients. Therefore, this intervention can be effective in occupational therapy to aid the recovery of stroke patients.

Flexible 3-dimension measuring system using robot hand

  • Ishimatsu, T.;Yasuda, K.;Kumon, K.;Matsui, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.700-704
    • /
    • 1989
  • A robotic system with a 3-dimensional profile measuring sensor is developed in order to measure the complicated shape of the target body. Due to this 3-dimensional profile measuring sensor, a computer is able to adjust the posture of the robot hand so that complicated global profile of the target body can be recognized after several measurements from the variant directions. In order to enable fast data processing, a digital signal processor and a look-up table is introduced.

  • PDF

Hand Gesture Recognition Algorithm using Mathematical Morphology

  • Park, Jong-Ho;Ko, Duck-Young
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.995-998
    • /
    • 2002
  • In this paper, we present a fast algorithm for hand gesture recognition of a human from an image by using the directivity information of the fingers. To implement a fast recognition system, we applied the morphological shape decomposition. A proposed gesture recognition algorithm has been tested on the 300 ${\times}$ 256 digital images. Our experiments using image acquired image camera have shown that the proposed hand gesture recognition algorithm is effective.

  • PDF

Development of Intelligent Robot's Hand with Three-Axis Finger Force Sensors for Intelligent Robot (3축 손가락 힘센서를 가진 지능로봇의 지능형 로봇손 개발)

  • Kim, Gab-Soon;Shin, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.300-305
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three-axis finger force sensors for an intelligent robot. In order to grasp an unknown object safely, it should measure the mass of the object, and determine the grasping force using the mass, then control the robot's fingers with the grasping force. In this paper, the intelligent robot's hand for an intelligent robot was developed. First, the three-axis finger force sensors were designed and manufactured, second, the intelligent robot's hand with three-axis finger force sensors were designed and fabricated, third, the high-speed control system was designed and manufactured using DSP( digital signal processor), finally, the characteristic test to grasp an unknown object safely was carried out. It was confirmed that the developed intelligent robot's hand could grasp an unknown object safely.