• Title/Summary/Keyword: Digital error correction

Search Result 222, Processing Time 0.023 seconds

A clustered cyclic product code for the burst error correction in the DVCR systems (DVCR 시스템의 연집 오류 정정을 위한 클러스터 순환 프러덕트 부호)

  • 이종화;유철우;강창언;홍대식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.1-10
    • /
    • 1997
  • In this paper, an improved lower bound on the burst-error correcting capability of th ecyclic product code is presented and through the analysis of this new bound clustered cyclic product (CCP abbr.)code is proposed. The CCP code, to improve the burst-error correcting capability, combines the idea of clustering and the transmission method of cyclic product code. That is, a cluster which is defined in this paper as a group of consecutive code symbols is employed as a new transmission unit to the code array transmission of cyclic product code. the burst-error correcting capability of the CCP code is improved without a loss in the random-error correcting capability and performance comparison in the digital video camera records (DVCR) system shows the superiority of the proposed CCP code over conventional product codes.

  • PDF

Coregistration of QuickBird Imagery and Digital Map Using a Modified ICP Algorithm (수정된 ICP알고리즘을 이용한 수치지도와 QuickBird 영상의 보정)

  • Han, Dong-Yeob;Eo, Yang-Dam;Kim, Yong-Hyun;Lee, Kwang-Jae;Kim, Youn-Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.621-626
    • /
    • 2010
  • For geometric correction of high-resolution images, the authors matched corresponding objects between a large-scale digital map and a QuickBird image to obtain the coefficients of the first order polynomial. Proximity corrections were performed, using the Boolean operation, to perform automated matching accurately. The modified iterative closest point (ICP) algorithm was used between the point data of the surface linear objects and the point data of the edge objects of the image to determine accurate transformation coefficients. As a result of the automated geometric correction for the study site, an accuracy of 1.207 root mean square error (RMSE) per pixel was obtained.

Elevation Correction of Multi-Temporal Digital Elevation Model based on Unmanned Aerial Vehicle Images over Agricultural Area (농경지 지역 무인항공기 영상 기반 시계열 수치표고모델 표고 보정)

  • Kim, Taeheon;Park, Jueon;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, we propose an approach for calibrating the elevation of a DEM (Digital Elevation Model), one of the key data in realizing unmanned aerial vehicle image-based precision agriculture. First of all, radiometric correction is performed on the orthophoto, and then ExG (Excess Green) is generated. The non-vegetation area is extracted based on the threshold value estimated by applying the Otsu method to ExG. Subsequently, the elevation of the DEM corresponding to the location of the non-vegetation area is extracted as EIFs (Elevation Invariant Features), which is data for elevation correction. The normalized Z-score is estimated based on the difference between the extracted EIFs to eliminate the outliers. Then, by constructing a linear regression model and correcting the elevation of the DEM, high-quality DEM is produced without GCPs (Ground Control Points). To verify the proposed method using a total of 10 DEMs, the maximum/minimum value, average/standard deviation before and after elevation correction were compared and analyzed. In addition, as a result of estimating the RMSE (Root Mean Square Error) by selecting the checkpoints, an average RMSE was derivsed as 0.35m. Comprehensively, it was confirmed that a high-quality DEM could be produced without GCPs.

16-QAM OFDM-Based W-Band Polarization-Division Duplex Communication System with Multi-gigabit Performance

  • Kim, Kwang Seon;Kim, Bong-Su;Kang, Min-Soo;Byun, Woo-Jin;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.206-213
    • /
    • 2014
  • This paper presents a novel 90 GHz band 16-quadrature amplitude modulation (16-QAM) orthogonal frequency-division multiplexing (OFDM) communication system. The system can deliver 6 Gbps through six channels with a bandwidth of 3 GHz. Each channel occupies 500 MHz and delivers 1 Gbps using 16-QAM OFDM. To implement the system, a low-noise amplifier and an RF up/down conversion fourth-harmonically pumped mixer are implemented using a $0.1-{\mu}m$ gallium arsenide pseudomorphic high-electron-mobility transistor process. A polarization-division duplex architecture is used for full-duplex communication. In a digital modem, OFDM with 256-point fast Fourier transform and (255, 239) Reed-Solomon forward error correction codecs are used. The modem can compensate for a carrier-frequency offset of up to 50 ppm and a symbol rate offset of up to 1 ppm. Experiment results show that the system can achieve a bit error rate of $10^{-5}$ at a signal-to-noise ratio of about 19.8 dB.

16-QAM-Based Highly Spectral-Efficient E-band Communication System with Bit Rate up to 10 Gbps

  • Kang, Min-Soo;Kim, Bong-Su;Kim, Kwang Seon;Byun, Woo-Jin;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.649-654
    • /
    • 2012
  • This paper presents a novel 16-quadrature-amplitude-modulation (QAM) E-band communication system. The system can deliver 10 Gbps through eight channels with a bandwidth of 5 GHz (71-76 GHz/81-86 GHz). Each channel occupies 390 MHz and delivers 1.25 Gbps using a 16-QAM. Thus, this system can achieve a bandwidth efficiency of 3.2 bit/s/Hz. To implement the system, a driver amplifier and an RF up-/down-conversion mixer are implemented using a $0.1{\mu}m$ gallium arsenide pseudomorphic high-electron-mobility transistor (GaAs pHEMT) process. A single-IF architecture is chosen for the RF receiver. In the digital modem, 24 square root raised cosine filters and four (255, 239) Reed-Solomon forward error correction codecs are used in parallel. The modem can compensate for a carrier-frequency offset of up to 50 ppm and a symbol rate offset of up to 1 ppm. Experiment results show that the system can achieve a bit error rate of $10^{-5}$ at a signal-to-noise ratio of about 21.5 dB.

Digital holographic memory system using angular multiplexing (각도 다중화를 이용한 디지털 홀로그램의 저장 및 재생에 관한 연구)

  • Kim, Young-Hoon;Yang, Byung-Choon;Lee, Byoung-Ho;Park, Joo-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.984-986
    • /
    • 1998
  • The volume holographic memory system suffers from the crosstalk noise. We study use of error correction coding(ECC) and angular multiplexing for digital holographic memory(DHM) system. The analog image is encoded to binary images by ECC. Binary images are stored using angular multiplexing in DHM. The retrieved binary images are decoded by ECC. The bit error-rate is measured for perspective of the DHM system.

  • PDF

A Study on the Synchronous Signal Detection and Error Correction in Radio Data System (RDS 수신 시스템에서 동기식 신호복원과 에러정정에 관한 연구)

  • 김기근;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.1-9
    • /
    • 1992
  • Radio data system is a next-generation broadcasting system of digital information communication which multiplexes the digital data into the FM stereo signal in VHF/FM band and provides important and convenient service features. And radio data are composed of groups which are divided into 4 blocks with information word and check word. In this paper, radio data receiver is developed which recovers and process radio data to provide services. Then we confirm that 7dB SNR is required to be 10S0-5TBER of demodulation. Deconding process of shortened-cyclic-decoder has been simulated by computer. Also, the time-compression (by 16 times) method has been adopted for the RDS features post-processing. Via the error probability calculation, simulation and experimentation, the developed receiver system is proved to satisfy the system specification of EBU and implemented by general logic gates and analog circuits.

  • PDF

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.

Design of clock duty-cycle correction circuits for high-speed SoCs (고속 SoC를 위한 클락 듀티 보정회로의 설계)

  • Han, Sang Woo;Kim, Jong Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2013
  • A clock duty-cycle corrector (DCC) which is an essential device of clocking circuits for high-speed system-on-chip (SoC) design is introduced in this paper. The architectures and operation of conventional analog feedback DCCs and digital feedback DCCs are compared and analyzed. A new mixed-mode feedback DCC that combines the advantages of analog DCCs and digital DCCs to achieve a wider duty-cycle correction range, higher operating frequency, and higher duty-cycle correction accuracy is presented. Especially, the architectures and design of a mixed-mode duty-cycle amplifier (DCA) which is a core unit circuit of a mixed-mode DCC is presented in detail. Two mixed-mode DCCs based on a single-stage DCA and a two-stage DCA were designed in a 0.18-${\mu}m$ CMOS process, and it is proven that the two-stage DCA-based DCC has a wider duty-cycler correction range and smaller duty-cycle correction error.

Design of Timing Register Structure for Area Optimization of High Resolution and Low Power SAR ADC (고해상도 저전력 SAR ADC의 면적 최적화를 위한 타이밍 레지스터 구조 설계)

  • Min, Kyung-Jik;Kim, Ju-Sung;Cho, Hoo-Hyun;Pu, Young-Gun;Hur, Jung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, a timing register architecture using demultiplexer and counter is proposed to reduce the area of the high resolution SAR type analog to digital converter. The area and digital power consumption of the conventional timing register based on the shift register is drastically increased, as the resolution is increased. On the other hand, the proposed architecture results in reduction of the area and the power consumption of the error correction logic of the SAR ADC. This chip is implemented with 0.18 um CMOS process. The area is reduced by 5.4 times and the digital power consumption is minimized compared with the conventional one. The 12 bits SAR ADC shows ENOB of 11 bits, power consumption of 2 mW, and conversion speed of 1 MSPS. The die area is $1 mm{\times}1mm$.